动态规划解最长公共子序列(LCS)(附详细填表过程)

目录

相关概念

子序列形式化定义:

公共子序列定义:

最长公共子序列(以下简称LCS):

方法

蛮力法求解最长公共子序列:

动态规划求解最长公共子序列:

分析规律:

做法:

伪代码:

下面演示下c数组的填表过程:(以求ABCB和BDCA的LCS长度为例):

时间复杂度:

代码:

结果示例:


相关概念

子序列形式化定义:

给定一个序列X=<x1,x2,x3,x4...,xm>,另一个序列Z=<z1,z2,z3,z4...,zk>,若存在一个严格递增的X的下标序列<i1,i2,i3,...,ik>对所有的1,2,3,...,k,都满足x(ik)=zk,则称Z是X的子序列

比如Z=<B,C,D,B>是X=<A,B,C,B,D,A,B>的子序列

公共子序列定义:

如果Z既是X的子序列,又是Y的子序列,则称Z为X和Y的公共子序列

最长公共子序列(以下简称LCS):

2个序列的子序列中长度最长的那个

方法

蛮力法求解最长公共子序列:

需要遍历出所有的可能,时间复杂度是O(n³),太慢了

动态规划求解最长公共子序列:

分析规律:

设X=<x1,x2,x3,x4...,xm>,Y=<y1,y2,y3,y4...,yn>为两个序列,Z=<z1,z2,z3,z4...,zk>是他们的任意公共子序列

经过分析,我们可以知道:

1、如果xm = yn,则zk = xm = yn 且 Zk-1是Xm-1和Yn-1的一个LCS

2、如果xm != yn 且 zk != xm,则Z是Xm-1和Y的一个LCS

3、如果xm != yn 且 zk != yn,则Z是X和Yn-1的一个LCS

所以如果用一个二维数组c表示字符串X和Y中对应的前i,前j个字符的LCS的长度话,可以得到以下公式:

文字意思就是:

p1表示X的前 i-1 个字符和Y的前 j 个字符的LCS的长度

p2表示X的前 i 个字符和Y的前 j-1 个字符的LCS的长度

p表示X的前 i-1 个字符和Y的前 j-1 个字符的LCS的长度

p0表示X的前 i 个字符和Y的前 j 个字符的LCS的长度

如果X的第 i 个字符和Y的第 j 个字符相等,则p0 = p + 1

如果X的第 i 个字符和Y的第 j 个字符不相等,则p0 = max(p1,p2)

 

做法:

因此,我们只需要从c[0][0]开始填表,填到c[m-1][n-1],所得到的c[m-1][n-1]就是LCS的长度

<
评论 99
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值