PoseCNN(A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes)复现记录

本文详细介绍了用于6D物体位姿估计的PoseCNN在杂乱场景中应用的环境搭建过程,包括Pangolin、Eigen、boost、Sophus、nanoflann、libsuitesparse-dev和Ceres等关键库的安装步骤与依赖配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PoseCNN: A Cbjonvolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes

挖个坑,希望研究位姿估计的人大家一起来交流。

一、环境搭建

1、Pangolin

Pangolin是对OpenGL进行封装的轻量级的OpenGL输入/输出和视频显示的库。可以用于3D视觉和3D导航的视觉图,可以输入各种类型的视频、并且可以保留视频和输入数据用于debug。

(base) robot@robot-ThinkPad-T570:~/Documents$ git clone https://github.com/stevenlovegrove/Pangolin.git

参考文章:

【1】Pangolin 安装及其使用(https://blog.csdn.net/c602273091/article/details/65441315

安装库:

Glew:
sudo apt-get install libglew-dev

Cmake:
sudo apt-get install cmake

Boost:
sudo apt-get install libboost-dev libboost-thread-dev libboost-filesystem-dev

安装Pangolin

git clone https://github.com/stevenlovegrove/Pangolin.git
cd Pangolin
mkdir build
cd build
cmake ..
cmake --build .

如果遇到问题请参考

【2】ORB_SLAM2之Pangolin的安装与问题处理(https://www.cnblogs.com/liufuqiang/p/5618335.html)

2、Eigen

Eigen是可以用来进行线性代数、矩阵、向量操作等运算的C++库,它里面包含了很多算法。它的License是MPL2,支持多平台【1】。

【1】Eigen介绍及简单使用(https://blog.csdn.net/yxpandjay/article/details/80587916

【2】《视觉slam十四讲》中Eigen库在ubuntu16.04中的安装和简单使用例程(https://blog.csdn.net/weixin_42056625/article/details/86299342

【3】Eigen库安装指南(两种方式)(https://www.cnblogs.com/newneul/p/8256803.html

3、boost

sudo apt-get install libboost-dev

4、Sophus

Sophus是提供李代数的支持。这里安装的是由Strasdat维护的非模板版本的Sophus库【1】

git clone http://github.com/strasdat/Sophus.git
cd Sophus/
git checkout a621ff
mkdir build
cd build
cmake ..
make

【1】Ubuntu 16.04 LTS 面向SLAM项目的基本配置与依赖库安装(更新中)(https://blog.csdn.net/cxsydjn/article/details/79548965

5、nanoflann

sudo apt-get install build-essential cmake libgtest-dev libeigen3-dev
mkdir build && cd build && cmake ..
make && make test

6、libsuitesparse-dev

sudo apt-get install libsuitesparse-dev

7、Ceres

安装依赖库

sudo apt-get install liblapack-dev libsuitesparse-dev libcxsparse3.1.4 libgflags-dev libgoogle-glog-dev libgtest-dev

 然后从github上下载ceres库,由于它是一个cmake工程,解压后进入对应的ceres目录下使用cmake编译并安装它。

mkdir build
cd  build
cmake ..
make 
sudo make install

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值