贪心策略

本文探讨了贪心策略在解决拼接最小字典序、切金条问题以及IPO和会议室项目宣讲等场景的应用。解释了如何通过贪心策略找到最小字典序的拼接方式,以及如何在有限资源下优化金条切割和项目选择,同时提供了贪心算法的代码实现和实际案例分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拼接最小字典序

给定一个字符串类型的数组strs,找到一种拼接方式,使得把所有字符串拼起来之后形成的字符串具有最低的字典序。

此题很多人的想法是把数组按照字典序排序,然后从头到尾连接,形成的字符串就是所有拼接结果中字典序最小的那个。但这很容易证明是错的,比如[ba,b]的排序结果是[b,ba],拼接结果是bba,但bab的字典序更小。 正确的策略是,将有序字符串数组从头到尾两两拼接时,应取两两拼接的拼接结果中字典序较小的那个。证明如下

如果令.代表拼接符号,那么这里的命题是如果str1.str2 < str2.str2且str2.str3 < str3.str2,那么一定有str1.str3 < str3.str1。这可以使用数学归纳法来证明。如果将az对应到025,比较两个字符串的字典序的过程,其实就比较两个26进制数大小的过程。str1.str2拼接的过程可以看做两个26进制数拼接的过程,若将两字符串解析成数字int1和int2,那么拼接就对应int1 * 26^(str2的长度) + int2,那么证明过程就变成了两个整数不等式递推另一个不等式了。


切金条

一块金条切成两半,是需要花费和长度数值一样的铜板的。比如 长度为20的 金条,不管切成长度多大的两半,都要花费20个铜 板。一群人想整分整块金 条,怎么分最省铜板?
例如,给定数组{10,20,30},代表一共三个人,整块金条长度为 10+20+30=60. 金条要分成10,20,30三个部分。
如果,先把长 度60的金条分成10和50,花费60 再把长度50的金条分成20和30, 花费50 一共花费110铜板。 但是如果, 先把长度60的金条分成30和30,花费60 再把长度30 金条分成10和20,花费30 一共花费90铜板。 输入一个数组,返回分割的最小代价

哈夫曼-贪心相关
切金条理解

贪心策略难以证明

代码实现
public class Code_02_Less_Money {

	public static int lessMoney(int[] arr) {
	
		//辅助结构:优先级队列也就是堆,默认是小根堆
		PriorityQueue<Integer> pQ = new PriorityQueue<>();
		for (int i = 0; i < arr.length; i++) {
			pQ.add(arr[i]);
		}
		int sum = 0;
		int cur = 0;
		//选择最小的相加,之后再放进去
		while (pQ.size() > 1) {
			cur = pQ.poll() + pQ.poll();
			sum += cur;
			pQ.add(cur);
		}
		return sum;
	}

	public static class MinheapComparator implements Comparator<Integer> {

		@Override
		public int compare(Integer o1, Integer o2) {
			return o1 - o2; // < 0  o1 < o2  负数
		}

	}

	public static class MaxheapComparator implements Comparator<Integer> {

		@Override
		public int compare(Integer o1, Integer o2) {
			return o2 - o1; // <   o2 < o1
		}

	}

	public static void main(String[] args) {
		// solution
		int[] arr = { 6, 7, 8, 9 };
		System.out.println(lessMoney(arr));

		int[] arrForHeap = { 3, 5, 2, 7, 0, 1, 6, 4 };

		// min heap
		PriorityQueue<Integer> minQ1 = new PriorityQueue<>();
		for (int i = 0; i < arrForHeap.length; i++) {
			minQ1.add(arrForHeap[i]);
		}
		while (!minQ1.isEmpty()) {
			System.out.print(minQ1.poll() + " ");
		}
		System.out.println();

		// min heap use Comparator
		PriorityQueue<Integer> minQ2 = new PriorityQueue<>(new MinheapComparator());
		for (int i = 0; i < arrForHeap.length; i++) {
			minQ2.add(arrForHeap[i]);
		}
		while (!minQ2.isEmpty()) {
			System.out.print(minQ2.poll() + " ");
		}
		System.out.println();

		// max heap use Comparator
		PriorityQueue<Integer> maxQ = new PriorityQueue<>(new MaxheapComparator());
		for (int i = 0; i < arrForHeap.length; i++) {
			maxQ.add(arrForHeap[i]);
		}
		while (!maxQ.isEmpty()) {
			System.out.print(maxQ.poll() + " ");
		}

	}

}

IPO

输入: 参数1,正数数组costs 参数2,正数数组profits 参数3,正数k 参数4,正数m

costs[i]表示i号项目的花费 profits[i]表示i号项目在扣除花费之后还能挣到的钱(利润) k表示你不能并
行、只能串行的最多做k个项目 m表示你初始的资金
说明:你每做完一个项目,马上获得的收益,可以支持你去做下一个 项目。
输出: 你最后获得的最大钱数

贪心策略:借助两个堆,一个是存放各个项目花费的小根堆、另一个是存放各个项目利润的大根堆。首先将所有项目放入小根堆而大根堆为空,对于手头上现有的资金(本金),将能做的项目(成本低于现有资金)从小根堆依次弹出并放入到大根堆,再弹出大根堆堆顶项目来完成,完成后根据利润更新本金。本金更新后,再将小根堆中能做的项目弹出加入到大根堆中,再弹出大根堆中的堆顶项目来做,重复此操作,直到某次本金更新和两个堆更新后大根堆无项目可做或者完成的项目个数已达k个为止。

import java.util.Comparator;
import java.util.PriorityQueue;

public class IPO {

  public class Project{
    int cost;
    int profit;
    public Project(int cost, int profit) {
      this.cost = cost;
      this.profit = profit;
    }
  }

  public class MinCostHeap implements Comparator<Project> { @Override public int compare(Project p1, Project p2) {
      return p1.cost-p2.cost; //升序,由此构造的堆将把花费最小项目的放到堆顶
    }
  }

  public class MaxProfitHeap implements Comparator<Project> { @Override public int compare(Project p1, Project p2) {
      return p2.profit-p1.profit;
    }
  }

  
  public int findMaximizedCapital(int costs[], int profits[], int k, int m) {
    int res = 0;
    PriorityQueue<Project> minCostHeap = new PriorityQueue<>(new MinCostHeap());
    PriorityQueue<Project> maxProfitHeap = new PriorityQueue<>(new MaxProfitHeap());
    //将所有项目放进小根堆
    for (int i = 0; i < costs.length; i++) {
      Project project = new Project(costs[i], profits[i]);
      minCostHeap.add(project);
    }
    for (int i = 0; i < k; i++) {
      //unlock project
      //弹出小于预算的项目,并压入大根堆
      while (minCostHeap.peek().cost < m) {
        maxProfitHeap.add(minCostHeap.poll());
      }
      if (maxProfitHeap.isEmpty()) {
        return m;
      }
      m +=  maxProfitHeap.poll().profit;
    }

    return m;
  }

}

会议室项目宣讲

一些项目要占用一个会议室宣讲,会议室不能同时容纳两个项目的宣讲。 给你每一个项目开始的时间和结束的时间(给你一个数组,里面 是一个个具体的项目),你来安排宣讲的日程,要求会议室进行 的宣讲的场次最多。返回这个最多的宣讲场次。

贪心策略: 1、开始时间最早的项目先安排。反例:开始时间最早,但持续时间占了一整天,其他项目无法安排。 2、持续时间最短的项目先安排。反例:这样安排会导致结束时间在此期间和开始时间在此期间的所有项目不能安排。 3、最优策略:最先结束的项目先安排。

import java.util.Arrays;
import java.util.Comparator;

public class Schedule {

  public class Project {
    int start;
    int end;
  }

  public class MostEarlyEndComparator implements Comparator<Project> { @Override public int compare(Project p1, Project p2) {
      return p1.end-p2.end;
    }
  }

  public int solution(Project projects[],int currentTime) {
    //sort by the end time
    Arrays.sort(projects, new MostEarlyEndComparator());
    int res = 0;
    for (int i = 0; i < projects.length; i++) {
      if (currentTime <= projects[i].start) {
        res++;
        currentTime = projects[i].end;
      }
    }
    return res;
  }
}

经验:贪心策略相关的问题,累积经验就好,不必花费大量精力去证明。解题的时候要么找相似点,要么脑补策略然后用对数器、测试用例去证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值