混合高斯模型_高斯混合模型(Mixture of Gaussians)

这篇博客介绍了EM算法在高斯混合模型中的应用。通过给出完全数据的分布和对数密度函数,详细阐述了EM算法的E步和M步,特别是如何利用拉格朗日乘子法估计参数,并给出了参数的迭代更新方程,完整地推导了高斯混合模型的EM算法过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EM算法一个很重要的应用就是可以应用于高斯混合模型. (算是给周一的考试压个题hhh)

假设我们的完全数据为

并有着如下的分布:

在这里

是缺失数据并且
.

对于单个观测

的完全对数密度函数为:

而对于完全对数似然函数如下:

在EM算法的E步中(这里只有

是随机项),条件期望如下:

下面我们可以利用EM算法求解这个问题了。

对于

的估计,这里有个小trick,就是需要用到拉格朗日乘子法。我们知道

由上式可以求出,

这里

由如下方式求解:

更进一步得

则有

类似得有

则有

综上我们就得到了以下得参数迭代更新方程:

至此,高斯混合模型的EM算法推导全部完成!

这里

.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值