day 23打卡

day 16
数组的创建
numpy 数组基础笔记
1、理解数组的维度
numpy 数组的维度(dimensions)   或称为轴(axis)的概念,与我们日常理解的维度非常相似。
直观判断:数组的维度层数通常可以通过打印输出时中括号[]的嵌套层数来初步确定;
一层[]:一维(1D)数组。
两层[]:二维(2D)数组。
三层[]:三维(3D)数组,以此类推
2、numpyn数组与深度Tensor的关系
在后续进行频繁的数学运算时,尤其是在深度学习领域,对于numpy 数组的理解非常有帮助,因为PYTORCH 或者tensorflow 中的tensor 张量本质上可以视为支持GPU加速和自动微分的numy数组。掌握nunpy的基本操作。能极大的降低学习tensor 的门槛。关于numpy 更加深入的性质,我们留待后续探讨。

3、一维数组(1D array)
一维数组在结构上与python 中的列表list 非常相似,她的主要区别在于:
打印输出格式:当使用print()函数输出时:
numpy 一维数组元素之间默认使用空格分隔。
python 列表的元素之间使用逗号分隔。
市例一维数组输出:
        [7,5,3,9]
        
4、二维数组(2D array)
二维数组可以被看作是:数组的数组,或者一个矩阵,其结构由两个主要维度决定
行数:代表整个二维数组中包含多少个一维数组。
列数:代表每个一维数组(也就是每一行)中包含多少个元素
值得注意二维数组不一定是正方形,他可以是任意的n*m

5、数组的创建
numpy 的array() 函数非常灵活,可以接受各种“各种序列型”对象作为输入参数来构建数组。
这意味着可以将python 的列表list 元组tuple 甚至其他的numpy数组等数据结构直接传递给np.array()来创建新的numpy 数组
# 数组的简单创建
import numpy  as np 
a=np.array([2,4,6,8,10,12])
b=np.array([[2,4,6],[8,10,12]])
print (a)
print (b)
# 分清楚列表和数组的区别
print([7,5,3,9])
print (np.array([7,5,3,9]))
a.shape
zeros=np.zeros((2,3))
zeros
ones=np.ones((3,))
ones
# 顺序数组的创建
arange=np.arange(1,10)
arange

@浙大疏锦行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值