day 9 热力图赫子图的绘制
#首先走一遍完整的流程
# 1、读取数据
import pandas as pd
data=pd.read_csv('/Users/gj/东财-学习/Python60DaysChallenge-main/data.csv')
data.info()
data.head(5)
# 把years in current job列和Home Ownership 列转化为数字
# 先查看内容
data["Years in current job"].value_counts()
data["Home Ownership"].value_counts()
# 创建前套字典用于映射
mapping={
"Years in current job":{
"< 1 year":0,
"1 year":1,
"2 years":2,
"3 years":3,
"4 years":4,
"5 years":5,
"6 years":6,
"7 years":7,
"8 years":8,
"9 years":9,
"10+ years":10
},
"Home Ownership":{
"Home Mortgage":0,
"Rent":1,
"Own Home":2,
"HaveMortgage":3
}
}
data["Years in current job"]=data["Years in current job"].map(mapping["Years in current job"])
data["Home Ownership"]=data["Home Ownership"].map(mapping["Home Ownership"])
data.info()
data.head()
data.columns
import pandas as pd
import seaborn
import matplotlib.pyplot as plt
# 提取连续值的特征
continuous_features=[
'Annual Income', 'Years in current job', 'Tax Liens',
'Number of Open Accounts', 'Years of Credit History',
'Maximum Open Credit', 'Number of Credit Problems',
'Months since last delinquent', 'Bankruptcies',
'Current Loan Amount', 'Current Credit Balance', 'Monthly Debt',
'Credit Score']
#计算相关系数
corr_matrix=data[continuous_features].corr()
#设置图片清晰度
plt.rcParams['figure.dpi']=300
#绘制相关系数矩阵的热图
plt.figure(figsize=(10,8))
seaborn.heatmap(corr_matrix,annot=True,cmap='coolwarm',fmt='.2f',linewidths=0.5)
plt.title("Correlation Matrix of Continuous Features")
plt.show()
day 9打卡
最新推荐文章于 2025-08-05 17:20:40 发布