day 9打卡

day 9 热力图赫子图的绘制
#首先走一遍完整的流程
# 1、读取数据
import pandas as pd
data=pd.read_csv('/Users/gj/东财-学习/Python60DaysChallenge-main/data.csv')
data.info()

data.head(5)
# 把years in current job列和Home Ownership 列转化为数字
# 先查看内容
data["Years in current job"].value_counts()
data["Home Ownership"].value_counts()
# 创建前套字典用于映射
mapping={
    "Years in current job":{
        "< 1 year":0,
        "1 year":1,
        "2 years":2,
        "3 years":3,
        "4 years":4,
        "5 years":5,
        "6 years":6,
        "7 years":7,
        "8 years":8,
        "9 years":9,
        "10+ years":10
    },
    "Home Ownership":{
        "Home Mortgage":0,
        "Rent":1,
        "Own Home":2,
        "HaveMortgage":3
    }
}
data["Years in current job"]=data["Years in current job"].map(mapping["Years in current job"])
data["Home Ownership"]=data["Home Ownership"].map(mapping["Home Ownership"])
data.info()
data.head()
data.columns
import pandas as pd
import seaborn
import matplotlib.pyplot as plt


# 提取连续值的特征
continuous_features=[
    'Annual Income', 'Years in current job', 'Tax Liens',
    'Number of Open Accounts', 'Years of Credit History',
    'Maximum Open Credit', 'Number of Credit Problems',
    'Months since last delinquent', 'Bankruptcies',
    'Current Loan Amount', 'Current Credit Balance', 'Monthly Debt',
    'Credit Score']
    #计算相关系数
corr_matrix=data[continuous_features].corr()
#设置图片清晰度
plt.rcParams['figure.dpi']=300
#绘制相关系数矩阵的热图
plt.figure(figsize=(10,8))
seaborn.heatmap(corr_matrix,annot=True,cmap='coolwarm',fmt='.2f',linewidths=0.5)
plt.title("Correlation Matrix of Continuous Features")
plt.show()

@浙大疏锦行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值