
人工智能
文章平均质量分 93
北漂老男人
你的指尖有改变世界的力量:
【星球力量关注:架构界扫地僧|架构师俱乐部星球】
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Prompt Engineering 高阶原理详细说明
Prompt Engineering的本质是模型行为的可控性工程,既要懂NLP底层机制,也要会系统架构与自动化优化。高阶实践需关注Prompt结构化、自动化、反馈闭环、安全鲁棒性、分布式与多模态融合。跟进最新论文与社区成果(如AutoPrompt、PromptTuning、RAG等),持续提升系统能力。原创 2025-06-21 00:00:00 · 619 阅读 · 0 评论 -
LangChain.js与工具链全流程深度解析
LangChain.js以其模块化、链式、Agent与工具驱动的设计,极大提升了大模型应用开发的灵活性与扩展性。主流程各环节环环相扣,既支持高度定制,又能方便地集成外部能力。其底层异步、分布式架构与高级算法,为智能体、RAG等前沿场景提供了坚实基础。通过流程图、伪代码、源码剖析和实际案例,本文为你打通了LangChain.js的任督二脉——知其然,更知其所以然。口诀总结:“分环节、链组合,工具Agent齐上阵;异步架构巧集成,调优调试步步稳。原创 2025-06-12 10:00:00 · 1055 阅读 · 0 评论 -
XAgent技术原理、流程与实战全解析
XAgent作为自治智能体的典型代表,通过任务拆解、计划生成、工具调用、反馈优化等环节,建立了“自学习、自适应、自进化”的AI自动化闭环。其底层结合了大模型、工具链、分布式系统等多学科前沿技术,既能应对实际复杂业务场景,又具备高度可扩展性与自我优化能力。原理上,XAgent以“分而治之”+“智能调度”为核心。技术上,融合了LLM、嵌入检索、强化学习等AI方法。架构上,采用可插拔、分布式、弹性伸缩的现代设计。实践上,已广泛应用于自动办公、智能客服、RPA等领域。未来趋势。原创 2025-06-12 09:59:19 · 859 阅读 · 0 评论 -
机器学习与模型微调:基于 ChatGLM2 的 Fine-tuning 实战全解
开源中英双语对话大模型,基于 GLM 架构,参数量大,支持高效推理与微调。支持 HuggingFace Transformers 接口,易于集成与二次开发。全流程把控:数据、模型、训练、验证、部署环环相扣。设计思想:高效、灵活、低成本,兼顾业务实际与底层性能。关键技巧:善用 LoRA/PEFT、分布式加速、Prompt 工程,提升迭代与部署效率。业务落地:结合场景定制数据,持续优化指标,闭环反馈。集成创新:与 Semantic Kernel 等框架融合,推动 AI 能力平台化。底层进阶。原创 2025-06-13 00:15:00 · 882 阅读 · 0 评论 -
LangChain.js与工具链全流程深度解析
LangChain.js 以其模块化、链式、Agent 与工具驱动的设计,极大提升了大模型应用开发的灵活性与扩展性。主流程各环节环环相扣,既支持高度定制,又能方便地集成外部能力。其底层异步、分布式架构与高级算法,为智能体、RAG 等前沿场景提供了坚实基础。通过流程图、伪代码、源码剖析和实际案例,本文为你打通了 LangChain.js 的任督二脉——知其然,更知其所以然。口诀总结:“分环节、链组合,工具 Agent 齐上阵;异步架构巧集成,调优调试步步稳。原创 2025-06-15 00:15:00 · 571 阅读 · 0 评论 -
LangChain.js 工具链全流程深度解析与源码剖析
super();// 口诀:name、description、handler都要有只要实现call()并注册到 Agent/Chain,即可快速封装企业内部API、ERP、CRM等。LangChain.js 以模块化、链式、Agent与工具驱动的设计,极大提升了大模型应用开发的灵活性与扩展性。主流程各环节环环相扣,既支持高度定制,又能方便地集成外部能力。其异步、分布式架构与高级算法,为智能体、RAG等前沿场景提供坚实基础。口诀总结:分环节、链组合,工具Agent齐上阵;原创 2025-06-16 00:15:00 · 913 阅读 · 0 评论 -
LangChain、多模态大模型与代码大模型的炼成之道
本文系统梳理了LangChain应用开发、多模态大模型与代码大模型的主流程、设计思想、关键源码与业务实践,深入底层实现与分布式架构。LangChain以链式组合和高度模块化设计,极大提升了大模型应用开发效率;多模态大模型通过特征对齐与交互,实现跨模态智能;代码大模型则推动AI辅助编程进入新阶段。调优与集成技巧、分布式理论的应用,则保障了大规模工业级部署的可行性。希望本文能帮助你从“知其然”到“知其所以然”,驾驭大模型开发的未来浪潮。速查口诀总览LangChain主流程:“预路构调解,链增返”原创 2025-06-17 00:00:00 · 594 阅读 · 0 评论 -
LangChain多模态大模型与代码大模型应用开发框架详解
LangChain作为大模型应用开发的中坚力量,通过链式抽象、模块化设计、强大的多模态与代码模型集成能力,极大降低了AI应用的开发门槛。核心流程包括数据预处理、模型初始化、Prompt构建、推理、后处理与业务集成,每一步都有成熟的设计思想与调优技巧。通过源码剖析、口诀总结与业务实战,开发者可以快速上手并深度优化。LangChain良好的技术栈兼容性和分布式能力,为AI驱动的业务创新提供了坚实基础。知其然——熟悉主流程与接口用法;知其所以然——理解底层架构、算法原理与工程权衡;原创 2025-06-18 00:00:00 · 697 阅读 · 0 评论 -
网络架构全景详解:从机房硬件到软件协议的系统认知
网络架构是一门涵盖硬件、软件、协议、运维、安全等多领域的系统工程。从机房选址、硬件部署、网络拓扑、软件协议到自动化与分布式理论,每一步都需精细设计与深刻理解。只有掌握底层原理、熟悉主流技术,结合业务场景灵活应用,才能打造高效、可靠、易扩展的现代网络体系。机房建设需安全,冷热电备环境全;分层拓扑明分工,结构布线易扩容;自动化配置批量做,模板推送效率多;Spine-Leaf弹性强,核心接入分两旁;LVS加Nginx,四七结合更灵活;云原生CNI,微服务弹性易治理。原创 2025-06-15 00:15:00 · 1929 阅读 · 0 评论 -
AI大模型全栈学习指南:从原理到普惠应用
《前端技术体系全景详解》系统梳理了现代前端开发的核心技术与实践路线。文章从Web前端基础(HTML/CSS/JavaScript)到主流框架(React/Vue/Angular),涵盖工程化工具、状态管理、测试体系等全流程技术栈。同时解析了移动端(React Native/Flutter)、小程序开发及跨平台方案,并深入架构设计、性能优化等进阶领域。通过伪代码示例和实战技巧,呈现了前端从开发到部署的完整链路,为开发者提供从入门到精通的系统化知识图谱,帮助构建完整的前端技术认知体系。原创 2025-05-23 09:43:40 · 919 阅读 · 0 评论 -
AI大模型技术:Prompt Engineering 统一指令模板全解析
Prompt Engineering 作为大模型应用的基础和核心,围绕目标明确、角色设定、输入格式化、指令细化、输出约束等流程模块,结合流程图、伪代码、源码注释、业务案例、调优经验、高阶集成与底层原理,帮助开发者建立起系统性认知。流程化与模块化设计,提升Prompt复用性与可维护性实战中不断调优,结合业务场景灵活调整关注Prompt底层机制,把握模型输出稳定性与创新性。原创 2025-06-13 00:15:00 · 617 阅读 · 0 评论 -
Prompt Engineering高阶原理:知其然,更知其所以然
Prompt不是简单的输入,而是模型行为的“遥控器”,通过自然语言精确控制模型的推理路径和输出分布。底层自注意力、上下文窗口、概率分布、信息熵等理论解释了Prompt为何能如此高效地“指挥”大模型。算法创新(如AutoPrompt、Prompt Tuning)和系统工程(模板流水线、分布式调度)让Prompt Engineering成为一门真正的工程学科。安全性、鲁棒性与自动优化是工程落地不可忽视的高阶课题。知其然,更要知其所以然。原创 2025-06-12 00:15:00 · 630 阅读 · 0 评论 -
AI大模型技术:Prompt Engineering 统一指令模板全流程深度解析
fill:#333;color:#333;color:#333;fill:none;目标定义角色设定背景补充输入格式化指令细化输出约束Prompt模板生成大模型调用结果解析与优化Prompt Engineering不是一句“写好提示词”那么简单,而是一个系统化、工程化、细致入微的流程。通过流程化拆解、行级代码剖析、业务案例、调优技巧、集成方案与底层原理梳理,你将拥有从“Prompt新手”到“工程专家”的全链路能力。记住口诀,善用流程,持续优化,Prompt工程让大模型为你所用!原创 2025-06-11 11:04:38 · 873 阅读 · 0 评论 -
迈入大模型时代:AI大模型基础与前沿全景解析
大模型基础:Transformer结构+海量数据+自监督学习。:是高效利用大模型的关键技能。:让模型具备“工具人”能力,扩展边界。开发与优化:关注数据质量、Prompt设计、推理效率与安全合规。架构演进:分布式技术推动模型规模极限。集成与应用:大模型正成为AI原生应用的“操作系统”,推动智能化变革。口诀总结:“数据优先,结构为本;指令引导,插件赋能;分布并行,集成创新。迈入大模型时代,唯有系统性认知与持续实践,方能立于潮头!如需源码、流程图、伪代码文件下载,或有其他技术问题,欢迎评论交流!原创 2025-06-13 00:15:00 · 748 阅读 · 0 评论 -
从入门到精通:AI大模型基础原理与应用全景通俗解析
AI大模型(LLM)就是一种“超大号的人工智能大脑”,它通过学习海量的数据(比如全网的文章、代码等),拥有了理解和生成自然语言的能力。它就像一个超级聪明的助手,能帮你写文章、写代码、答疑解惑,甚至自动完成某些任务。“数据为王,结构为本,提示为钥,插件为刃,分布并行,智能无限。AI大模型已成为推动人工智能产业化的核心动力。从数据准备、模型训练到实际应用、集成优化,每个环节都至关重要。只要你理解了基础原理,掌握了关键名词和主流程,无论是开发、架构还是产品设计,都能在大模型浪潮中把握机遇,勇立潮头。原创 2025-06-12 00:15:00 · 774 阅读 · 0 评论 -
迈入大模型时代:AI大模型基础与前沿全景技术解析
数据驱动、结构创新、工程优化、工具集成、分布式算力。Prompt Engineering与Function Calling是AI应用落地的加速器。底层算法与架构持续演进,推动AI能力边界不断突破。集成与优化使大模型真正服务于生产与业务。口诀总结“数据为王,结构为本,提示为钥,插件为刃,分布并行,智能无限。如需源码、流程图文件或深入交流,欢迎留言!原创 2025-06-12 00:15:00 · 766 阅读 · 0 评论