- 博客(147)
- 收藏
- 关注

原创 YOLOv5改进 | 一文汇总:如何在网络结构中添加注意力机制、C3、卷积、Neck、SPPF、检测头
为了进一步提升YOLOv5的性能,研究人员提出了多种改进策略,包括注意力机制、C3模块、卷积改进、Neck改进、SPPF模块、检测头改进等。本文将对这些改进策略进行综述,介绍其原理、应用场景、算法实现、代码示例、部署测试方法、文献资料、应用案例、总结、影响和未来扩展方向等。C3模块是一种用于特征提取的网络结构,它能够融合不同尺度的特征,从而提升模型对小目标的检测能力。SPPF模块是一种用于多尺度特征融合的网络结构,它可以提取不同尺度的特征并进行融合,从而提升模型对多尺度目标的检测能力。
2024-05-24 21:31:37
1727

原创 特征融合篇 | 结合内容引导注意力 DEA-Net 思想 实现双主干特征融合新方法 | IEEE TIP 2024
本篇介绍了一种基于细节增强注意力块(DEAB)的双主干特征融合新方法,该方法在 IEEE TIP 2024 上发表。该方法将内容引导注意力机制与细节增强卷积相结合,有效地融合了来自不同尺度的特征,显著提升了单幅图像去雾性能。该方法将内容引导注意力机制与细节增强卷积相结合,有效地融合了来自不同尺度的特征,显著提升了单幅图像去雾性能,在 IEEE TIP 2024 上得到了认可。
2024-05-23 22:32:37
1174

原创 改进YOLOv5 | 在 C3 模块中添加【SimAM】【CoTAttention】【SKAttention】【DoubleAttention】注意力机制
YOLOv5 是一个强大的目标检测模型,在 COCO 数据集上取得了 state-of-the-art 的结果。为了进一步提高 YOLOv5 的性能,本文提出了一种改进方案,在 C3 模块中添加 SimAM、CoTAttention、SKAttention 和 DoubleAttention 注意力机制。
2024-05-09 12:14:14
1152
原创 YOLOv11改进 | 2025最新轻量化自适应提取模块LAE助力边缘设备部署计算
LAE模块为YOLOv11在边缘设备上的部署提供了高效的解决方案,通过自适应感受野和动态通道控制,在保持检测精度的同时显著降低了计算复杂度。实验表明,LAE-YOLOv11在多种边缘计算场景中都能实现优异的性能平衡,为实时物体检测在边缘设备上的应用开辟了新途径。
2025-08-06 16:08:48
683
原创 YOLOv11改进:集成FocusedLinearAttention与C2PSA注意力机制实现性能提升
lr0: 0.0032 # 初始学习率lrf: 0.15 # 最终学习率 = lr0 * lrfbox: 0.05 # box损失增益cls: 0.5 # 分类损失增益cls_pw: 1.0 # 分类正样本权重obj: 1.0 # 目标损失增益obj_pw: 1.0 # 目标正样本权重fl_gamma: 1.5 # 聚焦参数。
2025-08-06 16:04:19
1007
原创 YOLOv11改进:添加DAttention (DAT)与二次创新C2PSA注意力机制
YOLOv11是YOLO系列的最新演进版本,继承了YOLO系列实时目标检测的优势,同时在精度和速度上进行了进一步优化。DAttention (Deformable Attention)通过可变形卷积的思想改进传统注意力机制,能更灵活地适应不同形状和尺寸的目标。C2PSA (Cross-Channel Cross-Position Self-Attention)是一种创新的注意力机制,通过交叉通道和交叉位置的注意力计算,显著提升了特征表示能力。
2025-07-28 16:05:31
965
原创 YOLOv11改进:添加SCConv空间和通道重构卷积二次创新C3k2
YOLOv11继承了YOLO系列的单阶段检测框架,通过骨干网络(Backbone)、颈部(Neck)和检测头(Head)的三部分结构实现高效目标检测。实时检测能力端到端训练多尺度特征融合减少冗余特征增强特征表达能力降低计算复杂度本文提出的YOLOv11-SC通过引入SCConv空间和通道重构卷积及改进的C3k2模块,显著提升了模型的特征提取能力。实验表明,在保持推理速度的同时,改进模型在COCO等基准数据集上实现了更高的检测精度。
2025-07-28 16:05:06
888
原创 YOLOv11改进 | RFAConv重塑空间注意力助力性能提升
性能提升:mAP提高2.9%,小目标检测提升4.7%结构创新:动态感受野+空间注意力融合高效设计:计算成本仅增加3.2%部署友好:兼容主流推理框架该工作为目标检测提供了新的技术思路,特别适用于无人机航拍、自动驾驶等复杂场景,未来可通过与Transformer等架构的深度结合进一步释放潜力。
2025-07-19 23:29:23
920
原创 YOLOv11改进 | DWRSeg扩张式残差助力小目标检测
精度突破:小目标检测mAP提升6.2%结构优雅:即插即用无需修改网络架构计算高效:参数量仅增加1.5%部署友好:支持主流推理框架该模块特别适用于无人机航拍、卫星遥感等小目标密集场景,为实时高精度检测系统提供了新的技术选择。未来可通过与Transformer等新型架构的结合进一步释放其潜力。
2025-07-19 23:28:06
599
原创 YOLOv11改进 | CVPR2025 DynamicConv与GhostModule融合的C3k2模块创新
性能突破:mAP提升3.8%同时保持高效结构创新:首次融合DynamicConv与Ghost应用广泛:特别适合多尺度目标检测部署友好:支持主流推理框架该工作为目标检测领域提供了新的技术思路,未来可通过与Transformer等架构的深度结合进一步释放潜力。
2025-07-16 00:11:51
1110
原创 YOLOv11 SPD-Conv空间深度转换卷积改进YOLOv11(编码技术SPDConv)
精度提升:小目标检测AP提高4-5%计算高效:FLOPs仅增加2-3%部署友好:兼容主流推理框架即插即用:无需调整网络结构通过空间到深度的创新变换,SPD-Conv有效解决了目标检测中的信息丢失难题,为实时高精度检测系统提供了新的技术选择。未来可通过与注意力机制、动态网络等技术的结合进一步释放其潜力。
2025-07-06 13:07:05
832
原创 YOLOv11 | SAConv与C3k2融合架构技术详解,替换传统下采样Conv
动态感受野调节:适应不同尺度目标多分支特征融合:保持高频细节信息硬件感知设计:内存连续访问优化智慧交通:多尺度车辆检测mAP提升6.2%医疗影像:微小病变检出率提升8.7%卫星遥感:小目标识别F1-score提升9.1%即插即用PyTorch模块TensorRT加速引擎ONNX/TFLite导出工具多场景预训练模型移动端极致优化自监督预训练策略4D时空卷积扩展。
2025-07-06 13:06:37
653
原创 YOLOv11改进 | RCS-OSA与C3k2融合架构技术详解
跨尺度特征金字塔:5级特征无损融合全空间注意力:HWD三维关系建模残差加速设计:深层网络训练优化智慧城市:密集人群计数误差降低12%自动驾驶:夜间检测mAP提升7.9%工业质检:缺陷分类F1-score提升9.3%标准YOLOv11集成实现TensorRT加速插件Android NNAPI部署示例多场景预训练模型动态稀疏注意力3D点云扩展自监督预训练。
2025-06-20 23:39:55
1027
原创 YOLOv11改进 | Conv篇 | Haar小波下采样(HWD)技术详解
频域分析:分离高低频成分避免混叠注意力融合:动态加权重要高频信息计算优化:利用小波变换的稀疏性实验证明该改进在医疗影像和卫星遥感DOTA数据集:小目标检测提升4.2%LUNA16数据集:肺结节检测灵敏度提升5.7%标准YOLOv11集成模块TensorRT加速插件ONNX导出工具链多场景预训练模型自适应小波基学习移动端极致优化多模态小波融合。
2025-06-18 16:36:51
631
原创 YOLOv11改进 | BiFormer注意力与C2PSA机制融合指南
环境准备:安装专用PyTorch环境模块替换:将原C3模块替换为C2PSABiFormer训练调优:调整学习率与正则化策略部署优化:使用TensorRT加速稀疏注意力场景适配:根据任务调整topk等参数智慧交通:车流密集场景mAP提升5.2%安防监控:夜间目标检测提升8.1%零售分析:货架商品识别F1-score提升6.7%注:完整代码与预训练模型已开源,包含详细的使用教程和迁移学习示例。
2025-06-18 16:29:07
1044
原创 YOLOv11改进 | 注意力机制篇 | SENetV1与C2PSASENet融合策略
双注意力融合:通道与空间注意力的协同优化位置感知增强:显式编码绝对位置信息跨通道交互:打破传统SE的通道隔离医疗影像:小目标检测提升9.2%自动驾驶:夜间检测mAP提升7.5%工业质检:缺陷识别F1-score提升11%标准YOLOv11集成实现TensorRT加速插件Android NNAPI部署示例ONNX导出工具链未来将持续优化动态通道剪枝和3D扩展能力。
2025-06-15 08:58:45
693
原创 YOLOv11 | 注意力机制篇 | MSDA多尺度空洞注意力与C2PSA机制
多尺度空洞金字塔:覆盖1×1至13×13等效感受野动态特征融合:学习最优尺度组合权重位置感知增强:绝对与相对位置的双重编码工业级效率:计算量仅增加18%实现4.3% mAP提升该方案已成功应用于多个实际项目,特别是在自动驾驶多目标跟踪和工业微小缺陷检测场景表现突出。开发移动端轻量版MSDA-Lite研究动态稀疏化多尺度注意力探索与其他模态的融合方案。
2025-06-15 08:58:11
836
原创 YOLOv11 | Conv篇 | ADown轻量化下采样操作
异构多分支架构:融合卷积与池化优势动态权重学习:自适应特征重要性硬件感知设计:内存连续+并行计算边缘计算设备实时视频分析功耗敏感场景完整代码已开源,未来将持续优化动态权重的量化方案和跨平台部署能力。
2025-06-10 18:34:31
829
原创 YOLOv11 | 注意力机制篇 | EMAttention与C2PSA机制的协同优化
检测精度:COCO mAP提升5.8,小目标检测提升8.2场景适应性:遮挡场景性能提升8.7工程可行性:推理时延控制在10ms以内开发移动端专用轻量版探索多模态注意力融合研究动态稀疏注意力机制。
2025-06-10 18:32:52
1044
原创 YOLOv11 | 注意力机制篇 | 可变形大核注意力Deformable-LKA与C2PSA机制
性能突破:COCO mAP提升6.2%,重度遮挡场景提升9.8%形变适应:动态调整感受野适应目标形变位置感知:通过C2PSA保留关键空间信息高效部署:TensorRT优化后保持实时性能该方案特别适用于行人检测、自动驾驶等需要处理形变和遮挡的场景,其模块化设计便于迁移到其他视觉任务。未来工作将聚焦于可变形注意力的自动压缩和3D扩展。
2025-06-05 21:57:30
1212
原创 YOLOv11 | 注意力机制篇 | 混合局部通道注意力MLCA与C2PSA机制
性能突破:COCO mAP提升4.7%,小目标检测提升8.4%混合感知:同时捕获局部细节与全局上下文位置感知:通过C2PSA保留关键空间信息高效部署:TensorRT优化后仅损失9.6% FPS该方案特别适用于无人机航拍、自动驾驶等需要多尺度感知的场景,其模块化设计便于迁移到其他视觉任务。未来工作将聚焦于注意力机制的自动压缩和3D扩展。
2025-06-05 21:54:43
885
原创 YOLOv11 | 注意力机制篇 | LSKAttention大核注意力与C2PSA机制助力极限涨点
极限性能突破:COCO mAP提升5.8%,小目标检测提升9.7%超大感受野:等效31×31卷积的上下文捕获能力位置感知增强:通过C2PSA保留关键空间信息高效部署:TensorRT优化后仅损失13% FPS该方案特别适用于无人机航拍、交通监控等需要大范围上下文理解的场景,其模块化设计也便于迁移到其他视觉任务。未来工作将聚焦于注意力机制的自动压缩和3D扩展。
2025-06-03 14:56:47
114
原创 YOLOv11改进 | 注意力机制篇 | SEAM与C2PSA机制优化遮挡检测
遮挡鲁棒性:显著提升30-70%遮挡场景下的检测性能位置感知:通过C2PSA保留关键空间信息高效设计:仅增加0.8%参数量即插即用:无需修改网络主体结构实验证明该改进在密集人群、交通监控等遮挡严重场景表现优异,且不影响正常场景的性能。这种注意力机制的创新组合为目标检测中的遮挡问题提供了有效解决方案,其模块化设计也便于迁移到其他视觉任务中。未来工作将聚焦于注意力机制的自动化和3D扩展。
2025-06-02 16:26:17
864
原创 YOLOv11改进 | Conv/卷积篇 | 全维度动态卷积ODConv与二次创新C3k2助力YOLOv11有效涨点
全维度动态性:核/空间/通道/输入四重自适应多尺度协同:通过C3k2整合不同感受野高效计算:注意力机制实现智能资源分配显著性能提升:COCO mAP提升4.5%实验表明,该改进对小目标检测尤为有效(mAP提升7.4%),同时保持了合理的计算开销增长。这种动态卷积与架构创新的结合为目标检测模型设计提供了新思路,其模块化特性也便于迁移到其他视觉任务中。未来工作将聚焦于动态机制的自动化和硬件友好性优化。
2025-06-01 10:06:25
760
原创 YOLOv11改进 | DWRSeg扩张式残差助力小目标检测
本文提出的DWRSeg模块通过创新的扩张式残差结构,有效提升了YOLOv11在小目标检测任务上的性能。C3k2DWRSeg作为基础模块,在保持模型效率的同时增强了多尺度特征提取能力。实验证明,该方法在多个小目标检测数据集上达到了state-of-the-art的性能,同时保持了较高的推理速度,适合实际应用部署。未来可进一步探索动态扩张机制和与其他先进模块的融合,持续提升小目标检测的性能上限。
2025-05-27 02:44:05
1109
1
原创 YOLOv11改进 | Neck篇 | 双向特征金字塔网络BiFPN助力YOLOv11有效涨点
更高效的特征融合:双向路径实现跨尺度信息充分交互自适应特征加权:学习不同分辨率特征的最优组合计算效率平衡:深度可分离卷积保持轻量性即插即用设计:无需修改其他网络组件实验表明,该改进在保持推理效率的同时显著提升检测性能,特别对小目标检测改善明显(+7.9% mAP)。BiFPN的模块化设计使其可轻松迁移到其他视觉任务,为多尺度特征处理提供了新的解决方案。未来工作将聚焦于动态结构和自动化设计方向。
2025-05-26 07:14:22
991
原创 YOLOv11改进 | Conv/卷积篇 | 2024 ECCV最新大感受野的小波卷积WTConv助力YOLOv11有效涨点
大感受野优势:等效15×15卷积核的感知范围多频带协同:低频定位与高频细节的互补增强动态适应性:学习各频带的最优融合权重部署友好:通过定制插件实现高效推理实验表明,WTConv在COCO数据集上可实现2.8%的mAP提升,对小目标检测的改善尤为显著(+6.7%)。这种基于频域分析的卷积创新为计算机视觉模型的架构设计提供了新思路,特别适用于需要多尺度感知的视觉任务。未来工作将聚焦于可学习小波基和硬件协同设计方向。
2025-05-23 22:18:01
935
原创 YOLOv11改进 | Neck篇 | 轻量化跨尺度跨通道融合颈部CCFM助力YOLOv11有效涨点
本文提出的CCFM模块通过创新的跨尺度跨通道融合机制,在YOLOv11的Neck部分实现了显著的性能提升。轻量化设计:深度可分离卷积+通道混洗减少计算负担高效特征融合:多尺度特征交互增强小目标检测动态通道适应:注意力机制提升特征表达能力即插即用:可无缝集成到现有YOLO架构实验表明,CCFM在COCO数据集上可实现2.5%的mAP提升,同时减少15%的参数量。该模块特别适合资源受限场景下的实时目标检测应用,为工业部署提供了新的优化方向。
2025-05-16 11:33:31
1327
原创 YOLOv11与Roboflow数据集使用全攻略
数据集搜索与下载数据标注工具数据预处理与增强多种格式导出数据集版本控制本文全面介绍了YOLOv11模型及其与Roboflow数据集的结合使用。从环境准备、数据获取、模型训练到部署应用,提供了完整的实践指南。YOLOv11在保持YOLO系列实时性优势的同时,通过多项创新进一步提升了检测精度,使其成为工业界和学术界的有力选择。Roboflow平台极大地简化了数据集获取和处理的流程,使得开发者可以更专注于模型设计和优化。
2025-05-11 13:04:35
1384
1
原创 YOLOv11 MobileViTv2主干网络集成指南
本方案通过MobileViTv2的精心改造和YOLOv11的深度适配,在保持轻量化的同时实现了检测精度的提升,特别适合移动端和边缘计算场景。实际部署测试显示,在华为Mate40设备上可实现62FPS的实时检测性能,功耗控制在1.2W以内。
2025-05-11 08:00:00
467
原创 YOLOv11 MobileViTv1主干网络集成指南
将MobileViTv1集成到YOLOv11的主干网络中,为移动端目标检测提供了一种高效的混合架构解决方案。通过结合CNN的局部特征提取能力和Transformer的全局建模优势,MobileViTv1在保持轻量化的同时显著提升了特征表示能力。本文提供的完整实现方案涵盖了从理论原理到工程实践的各个环节,开发者可以根据实际需求灵活调整网络配置。随着移动AI的普及,这类高效架构将成为边缘计算的重要选择。
2025-05-09 08:00:00
613
原创 多图详解VSCode搭建Python开发环境
通过本文的详细指导和图示演示,我们全面了解了如何使用VSCode搭建高效的Python开发环境。环境配置:正确安装Python扩展和解释器核心功能:利用智能补全、调试和测试工具提升效率高级应用:Jupyter Notebook和远程开发支持问题解决:常见问题的诊断和修复方法VSCode作为Python开发环境,提供了从简单脚本到复杂项目的全方位支持,配合不断发展的扩展生态系统,将继续成为Python开发者的强大工具。
2025-05-05 13:41:16
1247
2
原创 YOLOv8 标签透明化与可视化优化指南
本文详细介绍了YOLOv8检测结果的可视化优化技术,包括标签透明化、文字大小调节和边界框粗细调节。通过灵活的代码实现,用户可以根据不同应用场景定制最适合的可视化效果。这些优化不仅能提升视觉体验,还能在实际应用中提高检测结果的可读性和可用性。
2025-05-05 12:39:28
351
原创 YOLOv11改进:利用RT-DETR主干网络PPHGNetV2助力轻量化目标检测
目标检测作为计算机视觉领域的核心任务之一,在自动驾驶、视频监控、医疗影像分析等领域有着广泛应用。YOLO(You Only Look Once)系列作为实时目标检测的代表性算法,以其高效性和准确性著称。YOLOv11作为该系列的最新演进版本,在保持实时性的同时进一步提升了检测精度。本文提出将RT-DETR(Real-Time DEtection TRansformer)的主干网络PPHGNetV2引入YOLOv11,旨在实现模型轻量化的同时提升检测性能。
2025-05-03 23:11:20
1408
2
原创 YOLOv11改进:视觉变换器SwinTransformer目标检测网络
本文提出的Swin-YOLOv11目标检测网络,通过将SwinTransformer的强大特征提取能力与YOLOv11的高效检测框架相结合,在保持实时性的同时显著提升了检测精度。实验表明,该方法在COCO等基准数据集上优于原版YOLOv11,特别是在复杂场景和小目标检测方面表现突出。通过灵活的架构设计,可以适配从移动端到服务器端的各种应用场景。未来工作将聚焦于进一步优化计算效率,探索更高效的自注意力机制,以及研究自监督预训练方法。
2025-04-30 12:04:00
906
原创 YOLOv11改进:RevColV1可逆列目标检测网络(特征解耦助力小目标检测)
本文提出的RevCol-YOLOv11目标检测网络,通过创新的可逆列架构和特征解耦机制,显著提升了小目标检测性能。实验表明,该方法在保持YOLO系列高效特性的同时,对小目标的检测精度提升明显。可逆设计带来的无损特征传播和多列交互增强的特征表示能力,为目标检测领域提供了新的技术思路。未来工作将聚焦于进一步优化计算效率,探索更灵活的特征解耦策略,以及研究跨模态的可逆学习框架。
2025-04-26 16:02:30
759
1
原创 YOLOv11改进:轻量级移动端网络ShuffleNetV2(附代码+修改教程)
本文提出的Shuffle-YOLOv11目标检测网络,通过引入ShuffleNetV2的轻量化设计,在保持YOLO系列实时性的同时大幅降低了模型复杂度和计算量。实验证明,该方法在移动端设备上实现了显著的加速效果,为边缘计算场景提供了实用的解决方案。完整的代码实现和详细的修改教程,使开发者能够快速将这一改进应用到实际项目中。未来工作将聚焦于进一步优化模型效率,探索自动化轻量化方法,以及研究跨平台的统一优化策略。
2025-04-23 16:06:26
888
原创 YOLOv11:可变形大核注意力与C2PSA机制的创新融合
形变自适应的大核感受野(31×31可变形卷积)跨维度的注意力协同(空间-通道联合优化)位置感知的遮挡补偿(显式位置编码+特征增强)实验证明该方案在保持实时性的前提下,显著提升了模型在复杂场景下的检测能力。特别是对重度遮挡目标的检测精度提升达9.8%,为自动驾驶、视频监控等关键应用提供了更可靠的技术方案。未来工作将聚焦于算法在边缘设备上的极致优化,以及3D视觉任务的扩展应用。
2025-04-21 07:30:00
1047
原创 YOLOv11改进:轻量级移动端网络ShuffleNetV1(附代码+修改教程)
本文提出的ShuffleNetV1-YOLOv11目标检测网络,通过引入ShuffleNetV1的轻量化设计,在保持YOLO系列实时性的同时大幅降低了模型复杂度和计算量。实验证明,该方法在移动端设备上实现了显著的加速效果,为边缘计算场景提供了实用的解决方案。完整的代码实现和详细的修改教程,使开发者能够快速将这一改进应用到实际项目中。未来工作将聚焦于进一步优化模型效率,探索自动化轻量化方法,以及研究跨平台的统一优化策略。
2025-04-19 12:38:17
671
原创 YOLOv11改进:基于小波卷积WTConv的大感受野目标检测网络-
本文提出的WT-YOLOv11目标检测网络,通过引入小波卷积的多尺度分析能力,显著提升了模型的大感受野建模能力和多尺度目标检测性能。实验表明,该方法在保持YOLO系列高效特性的同时,在多个基准数据集上实现了明显的性能提升,特别是在小目标检测和复杂场景下的表现尤为突出。完整的技术实现和详细的部署方案,为计算机视觉领域的研究者和工程师提供了实用的技术参考。未来工作将聚焦于进一步优化计算效率,探索自适应小波变换机制,以及研究跨模态的小波表示学习。
2025-04-18 21:13:29
831
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人