快速下载!解锁Hugging Face模型下载的高效策略

在人工智能和自然语言处理领域,Hugging Face无疑是一个重要的存在。作为一个开放的社区平台,它不仅提供了大量的预训练模型和数据集,还成为了研究人员和开发者交流合作的桥梁。
当我们在进行机器学习项目开发、学术研究或想要快速部署AI应用时,都会需要到Hugging Face上寻找合适的资源。然而考虑到国内的网络环境,很多小伙伴从Hugging Face上下载模型和数据集都遇到各种各样的问题,今天介绍一些Hugging Face模型下载的高效策略。

一、使用替代站点

在访问Hugging Face遇到网络问题时,转向替代站点是一个明智的选择。以下是两个推荐的替代站点,它们都能提供稳定、快速的下载服务:

1、HF-Mirror

网站地址:https://hf-mirror.com/,这是Hugging Face的官方镜像站点。作为一个公益项目,HF-Mirror专注于为国内AI开发者提供一个快速、稳定的模型和数据集下载环境。
特点与优势

  • 同步更新:与Hugging Face主站保持同步更新,确保用户能够获取到最新的模型和数据集。
  • 高速下载:利用国内服务器优势,大幅提升下载速度,减少等待时间。
  • 稳定可靠:作为官方镜像,保证了服务的稳定性和可靠性。

2、ModelScope魔塔社区

网站地址:https://www.modelscope.cn/,ModelScope是由阿里发起的AI模型共享平台,它汇集了众多高质量的预训练模型和数据集,致力于推动AI技术的开放与共享。
特点

  • 中文友好:作为面向中文用户的平台,ModelScope提供了全中文的界面和文档,极大地方便了国内开发者的使用。
  • 下载速度快:依托阿里巴巴的强大基础设施,ModelScope提供了极快的下载速度,有效解决了海外站点下载慢的问题。
  • 部分海外特定模型可能尚未包含,可能还得去huggingface上找。

二、常见下载方法

1、官方推荐的下载工具huggingface-cli

简介

huggingface-cli是Hugging Face官方提供的命令行工具,用于方便地下载和管理模型和数据集。

安装Hugging Face Hub库
在终端中执行以下命令以安装或更新Hugging Face Hub库:

pip install -U huggingface_hub

此命令将确保拥有最新版本的huggingface_hub库,以便能够顺利地与Hugging Face平台进行交互。

(可选)配置环境变量
为了优化访问速度和稳定性,可以设置环境变量以使用Hugging Face的镜像站点。在终端中执行以下命令:

export HF_ENDPOINT=https://hf-mirror.com

这样设置的效果是使用hf-mirror.com作为Hugging Face的替代站点,从而可能获得更快的下载速度和更稳定的连接。

下载

下载模型
要下载特定的模型,例如deepseek-ai的DeepSeek-R1-Distill-Qwen-7B模型,可以使用以下命令:

huggingface-cli download deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --local-dir deepseek

这条命令会将DeepSeek-R1-Distill-Qwen-7B模型下载到本地目录deepseek中。通过指定–local-dir参数,可以自定义模型的存储位置,以便于后续管理和使用。

下载单个文件

如果只需要下载仓库中的某个特定文件,例如从deepseek-ai/DeepSeek-R1-Distill-Qwen-7B仓库中下载README.md文件,可以使用以下命令:

huggingface-cli download deepseek-ai/DeepSeek-R1-Distill-Qwen-7B README.md --local-dir deepseek

这条命令会将README.md文件从deepseek-ai/DeepSeek-R1-Distill-Qwen-7B仓库下载到本地目录deepseek中。通过指定文件名和–local-dir参数,可以精确地获取所需的文件,并放置在指定的位置。

注意:省略–local-dir参数时,模型将被下载到默认位置。

下载数据集
对于数据集的下载,例如open-r1/OpenR1-Math-220k数据集,执行以下命令:

huggingface-cli download --repo-type dataset open-r1/OpenR1-Math-220k

在此命令中,--repo-type dataset指示该操作针对的是数据集类型。

使用Token下载(部分模型需要):

部分模型需登录申请许可,可以先从官网获取 Access Token ,然后用命令行下载。
huggingface-cli下载时添加–token参数:

huggingface-cli download --token hf_***  meta-llama/Llama-2-7b-hf --local-dir Llama-2-7b-hf

确保将hf_***替换为的实际Access Token。这样,就可以顺利下载需要登录许可的项目了。

2、使用 Git Clone 下载(不推荐)

安装 Git 和Git LFS

sudo apt update
sudo apt install git
sudo apt install git-lfs
git lfs install

使用 Git Clone 命令下载模型
例如,要下载deepseek-ai/DeepSeek-R1-Distill-Qwen-7B模型,可以执行以下命令:

git clone https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

要下载单个文件,也可以

git clone https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B/resolve/main/README.md?download=true

如果需要登录许可,先获取Access Token,并使用以下格式克隆:

git clone https://<your-username>:<your-access-token>@huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

请将和替换为实际用户名和Access Token。
不过,这种方式由于不支持断点续传,断了就需要重新下载,所以并不推荐

3、浏览器直接下载(适合Windows)

Hugging Face网页文件栏有下载图标,可以点击直接下载。
在这里插入图片描述

4、使用 IDM 等多线程下载工具(Windows)

在Windows系统上,使用多线程下载工具可以有效提高下载速度,特别是在面对大型模型文件时。Internet Download Manager(IDM)是一款经典的多线程下载工具,特别适用于Windows用户。
在电脑上安装IDM及其浏览器插件后,可以先获取下载链接,然后用IDM直接下载模型文件。

在这里插入图片描述

### 如何下载 Llama 7B 模型文件 要成功下载 Llama 7B 模型文件,可以按照以下方法操作: #### 准备工作 首先需要确认是否有足够的存储空间来保存模型文件以及运行环境的支持。Llama 7B 是由 Meta 提供的大规模语言模型,其官方版本通常托管于 Hugging Face 的 Model Hub 上。 #### 步骤说明 1. **申请访问权限** 需要在 Hugging Face 官方网站注册账号,并通过填写表单的方式向 Meta 请求访问 Llama 系列模型的权限[^3]。一旦获得批准,即可解锁对该模型下载功能。 2. **安装必要的依赖包** 使用 Python 和 `transformers` 库作为基础工具链。如果尚未安装这些库,则可以通过 pip 命令完成安装: ```bash pip install transformers datasets accelerate torch ``` 3. **克隆转换脚本** 如果目标是从原始格式转换到 Hugging Face 兼容格式 (`.bin`) 文件,那么还需要获取相应的权重转换脚本。具体命令如下所示: ```bash git clone https://github.com/huggingface/transformers.git cd transformers/examples/pytorch/language-modeling/ python convert_llama_weights_to_hf.py --input_dir /path/to/downloaded/llama --model_size 7B --output_dir ./converted_model ``` 这里 `/path/to/downloaded/llama` 表示已下载好的原始 Llama 权重所在目录位置;而 `./converted_model` 就是用来存放最终生成的 HF 版本模型的位置。 4. **加载与验证模型** 调整好上述配置之后,在实际应用过程中可通过调用 `AutoModelForCausalLM.from_pretrained()` 方法快速实例化预训练模型对象以便后续推理或微调用途。例如下面展示了一段简单的代码片段用于测试刚刚准备完毕的 Llama-7B-HF 是否正常运作: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("./converted_model") model = AutoModelForCausalLM.from_pretrained("./converted_model", device_map="auto", load_in_8bit=True) prompt = "Once upon a time" inputs = tokenizer(prompt, return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 以上即完成了从零开始搭建支持本地部署的 Llama 7B 大语言模型的整体流程概述[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值