1.集成算法概述
Q:随机森林
是一种集成算法
不是一种单独的机器 学习算法
Q:集成算法的目标
考虑多个评估器的建模结果,汇总之后 得到一个综合的结果,以此来获得更好的回归或者分类表现
Q:集成评估器
一个模型是一个评估器
多个模型成为集成评估器(ensemble estimator)
每个模型,或者叫单个评估器,都叫做基评估器(base estimator)
常用三类:装袋法(Bagging),提升法(Boosting)和stacking(?也许是堆栈法?)
Q:装袋法(Bagging)和提升法(Boosting)的区别
装袋法(Bagging)的每个模型相互独立.通过平均或者多数表决来决定评估器的结果.
代表是随机森林
提升法(Boosting)中的每个模型是相关的,并且是一一建立的。核心思想是,利用多个弱评估器的力量,一次次对难以评估的样本进行预测,最终形成一个强评估器.
代表是Adaboost和梯度提升树
2.重要参数
Q:n_estimators
表示树木的数量,也就是评估器的数量
评估器的数量越大,也就随机森林的模型效果也就越好.
但会到达一个边界后,就是波动不会再增加
并且,评估器的数量越大,占用的内存资源越多.
Q:决策树和随机森林的效果
随机森林的效果,远远好于决策树
随机森林属于袋装集成算法(bagging),对基评估器的预测结果取平均值 或者多数表决原则
import numpy as np
from scipy.special import comb #comb指的是数学中的组合
np.array([comb(25,i)*(0.2**i)*((1-0.2)**(25-i)) for i in range(13,26)]).sum()
#这个是用到了幂指数的算法**,
#用到了数组,对数组里面的元素相加时,用上sum
#熟悉这个循环的写法
结果:0.00036904803455582827
说明,假定单个错误的概率是0.2的情况下,错