python音频分析工具_python – 鸟鸣音频分析 – 查找两个剪辑的匹配程度

博客建议在音频分析中使用音频而非图像,推荐用MFCC进行特征提取。提到使用GMM进行分类,需有标签/已知数据作为机器学习基础。还介绍了UBM可对背景噪声/信道失真建模,通过似然比消除偏差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要做出这个答案,因为评论太久了。

我基本上在这个领域工作,所以我觉得我有一些知识。显然,从我的立场来看,我建议使用音频而不是图像。我还建议使用MFCC作为特征提取(您可以将其视为总结/表征音频特定子带的系数[因为它们])。

GMM是去的。

要执行此任务,您必须拥有一些(最好是很多)标签/已知数据,否则没有机器学习的基础。

您可能会发现有用的技术性:

‘Then, during testing, you submit a

query MFCC vector to the GMM, and it

will tell you which species it thinks

it is.’

更准确地说,您向每个GMM提交查询(如果您正确使用这些查询,则每个都给出该概率分布发出的特定特征向量的可能性[概率]。然后,比较您从所有GMM获得的所有可能性分数,并根据您收到的最高分数进行分类。

UBM中

您可以使用UBM(通用背景模型)简单地对所有背景噪声/信道失真进行建模,而不是“过滤掉”噪声。该模型由使用您可用的所有训练数据训练的GMM(即您为每个课程使用的所有训练数据)组成。您可以使用它来获得“似然比”(Pr [x将由特定模型发射] / Pr [x将由背景模型(UBM)]发射),以帮助消除背景模型可以解释的任何偏差本身。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值