spss多元线性回归_SPSS做线性回归是否要对原始数据进行标准化处理?

在SPSS中进行多元线性回归时,通常不需要对原始数据进行标准化处理。线性回归方程直接基于原始数据拟合,方便解释预测结果和自变量的重要性。虽然标准化可能使比较自变量的重要性变得复杂,但SPSS会自动提供标准化系数,使得比较变得容易,因此手动标准化并不必要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

41af76af090342dbd68e4348ce1fefed.gif

我们用SPSS做多元线性回归时,有多个自变量X,它们单位不同,大小有异,所以就会有人问在回归前是否要对原始数据进行标准化处理?

答案是:不需要

我们简单看一个例子。比如下方这个多元线性回归方程式,

042dac82bcbeef7d559d0ccb10c6230b.png

其他条件不变时,自变量X3每增加一个单位,Y的预测值随之增加10.3个单位,这是对回归系数的解释。要注意的是,这个线性回归是在原始变量基础上进行拟合所得的结果,这个式子是含带物理单位的,自变量X和因变量Y在变化中都是携带实际意义的。

在这种情况下,我们很轻松的带入自变量X的具体取值,即可得到相应的Y值,预测效果直截了当,这是采取原始数据进行线性拟合的好处。

如果我们对原始数据采取了标准化处理,情况就不同了。

标准化处理后自变量、因变量的物理单位没有了,我们拿此时的线性回归方程做预测时就会十分麻烦,要对新的自变量取值进行标准化,得到的Y还是一个标准化后的数据,一眼看不到它的实际大小和物理意义。

除了要解决预测的问题,线性回归还要输出自变量X的重要性排序,现在有三个对Y有显著影响的自变量X,那么我们想知道X1、X2和X3谁更重要。

此时我们需要对比标准化后的回归系数,如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值