分组卷积计算量_深度学习卷积参数量,图像输出尺寸,感受野的计算

本文详细探讨了深度学习中的卷积计算,包括分组卷积、深度可分离卷积的参数量计算,以及卷积后输出图像尺寸、空洞卷积的处理和感受野的计算方法。提供了公式和实例,有助于理解并应用于实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习卷积参数量,图像输出尺寸,感受野的计算,

是针对我之前一篇博客的一些单独抽离和总结,方便复习

文章目录

0. 网络中卷积乘法次数和加法次数

1. 分组卷积

2. 深度可分离卷积

3. 卷积后输出的图像尺寸

4. 空洞卷积

5. 感受野的计算

感受野计算例1

感受野计算例2

0. 网络中卷积乘法次数和加法次数

K × K {K}\times{K}K×K的卷积核,在一次卷积的过程中,运用K 2 K^{2}K2次的乘法,K 2 − 1 K^{2}-1K2−1次加法

1. 分组卷积

详细的带图解释引用参考这个链接

https://zhuanlan.zhihu.com/p/65377955

概念

将输入特征图按照通道数分成g组,每组分别进行卷积操作

859c1986057e88591397db02974db6c3.png

计算量的计算

分 组 卷 积 参 数 量 标 准 卷 积 参 数 量 = h 1 × w 1 × c 1 g × c 2 g × g h 1 × w 1 × c 1 × c 2 = 1 g \frac{分组卷积参数量}{标准卷积参数量} = \frac{ {h_{1}} \times {w_{1}} \times {\frac {c_{1}} {g}} \times{\frac{c_2}{g}}\times{g}} { {h_{1}} \times {w_{1}} \times {c_{1}} \times{c_2}} = \frac{1}{g}标准卷积参数量分组卷积参数量​=h1​×w1​×c1​×c2​h1​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值