python dataframe groupby_第1关:了解python数据表操作

bca32e0ada5b27e596b74c0d7b4ef659.png

如果你已经:

  • 安装好python
  • 有一点python语言基础

而且

  • 没有过系统化的python学习
  • 希望掌握常见的dataframe处理方法

这篇文章将帮助你掌握工作中常用的工作表操作。

文章阅读时间约40min。

1. 导入package:pandas

import 

2. 数据读取与保存

  • 读取文件
temp 
  • 输出文件
# 输出单个文件
  • 输出多个文件到同一个excel中
writer 
  • 创建新的dataframe
# 使用list创建df

3. 数据初步描述

# 查看前几行与后几行

4. 数据行列操作

4.1 修改列名

### 修改全部列名
temp.columns = ["col_name1","col_name2",...] #需与temp表列数相同

### 修改部分列名
temp_1 = temp.copy()
temp_1.rename(columns={'Province':'省份'},inplace=True)

### 将表格列名放入list中
cols = temp_1.columns.tolist()

4.2 增减行列

  • 增加一列
temp
  • 基于原有多列增加列
def 
  • 删除行列
temp

4.3 行列切片与数据选择

  • 简单行切片
## 选取第2-4行
  • 根据条件做行筛选
1.
  • 列切片
temp

5. dataframe相关用法

  • 索引:index
temp 
  • 排序:sort
temp 
  • 去重:drop_duplicates
temp
  • 空值:dropna/fillna
df
  • 用指定值填充/替换
values 
  • 宽表转长表,长表转宽表
## 长转宽:

6. 值统计

6.1 统计值

temp

6.2 数据计算

  • group by
temp_groupby 
  • 分组排名
temp 

7. 数据合并

  • merge,根据某列匹配两个表格
df1.merge(df2, on = ["key"], how='right')
# 当左右表格键名不一致时使用
df3.merge(df4, left_on='lkey',right_on='rkey') 
  • concat
# 需要保证列名/行数相同
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值