简述er图的作用_Hash算法简述(二)

本文分析了基于深度学习的哈希方法,包括DSH、DHN、HashNet、DPSH和DSDH。这些方法通过不同的优化策略和损失函数来改善图像检索效率和相似性检索。尽管面临优化难题,但在某些情况下仍展现出优于传统算法的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2c888584d865cb9ace66f64a2bddaedb.png

接上文,我们这里分成基于deep learning方式的hash method,分析监督方式、公式和代码实现。

1. DSH:Deep Supervised Hashing for Fast Image Retrieval

DSH​www.cv-foundation.org

6c366fcb47d23826918b3e9e009bfb39.png

网络结构如上图所示,最终的hash code来自于Binary-like outputs二值化结果。

理想的损失函数如上式,直接对hash code进行相似性监督,但是这样难以优化,所以需要对松弛的连续实值进行相似性监督训练,然后约束其值靠近

,损失函数公式如下式所示。

训练后数据的分布如下图所示,和

有关系。

52b54a2f50e8003646b1d98b7c8c4957.png

使用对比结果如下表所示,可以看出结果明显好于传统算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值