随机过程公式汇总

这篇博客总结了概率论和随机过程的关键概念,包括随机变量的数学期望、方差、协方差、相关系数、矩和特征函数。深入探讨了随机过程的数字特征,如均值函数、方差函数、自相关函数等,并涵盖了维纳过程、泊松过程及其叠加、复合泊松过程的相关性质和分布。此外,还讨论了泊松过程的到达时间和时间间隔分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概率论基础

条件概率: P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
乘法公式: P ( A B ) = P ( A ) P ( B ∣ A ) P(AB)=P(A)P(B|A) P(AB)=P(A)P(BA)
全概率公式: P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A)=\sum_{i=1}^{n}P{(B_i)}P(A|B_i) P(A)=i=1nP(Bi)P(ABi)
贝叶斯公式: P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j )      i = 1 , 2 , . . . n P(B_i|A)=\frac{P(B_i)P(A|B_i)}{\sum_{j=1}^{n}P(B_j)P(A|B_j)}\space \space \space \space i=1,2,...n P(BiA)=j=1nP(Bj)P(ABj)P(Bi)P(ABi)    i=1,2,...n
事件独立则有: P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
其他: P ( A B ) = P ( B ) − P ( A ‾ B ) P(AB)=P(B)-P(\overline{A}B) P(AB)=P(B)P(AB) P ( A ⋃ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \bigcup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)


离散分布型
分布类型 分布律
(0-1)分布 P { X = k } = p k ( 1 − p ) 1 − k P\{X=k\}=p^k(1-p)^{1-k} P{ X=k}=pk(1p)1k
二项分布 P { X = k } = C n k p k ( 1 − p ) n − k P\{X=k\}=C_n^kp^k(1-p)^{n-k} P{ X=k}=Cnkpk(1p)nk
几何分布 P { X = k } = p k ( 1 − p ) n − k P\{X=k\}=p^k(1-p)^{n-k} P{ X=k}=pk(1p)nk
超几何分布 P { X = k } = C M k C N − M n − k C N n P\{X=k\}=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n} P{ X=k}=CNnCMkCNMnk
泊松分布 P { X = k } = λ k e − λ k ! P\{X=k\}=\frac{\lambda^ke^{-\lambda}}{k!} P{ X=k}=k!λkeλ
等可能分布 P { X = x k } = 1 n P\{X=x_k\}=\frac{1}{n} P{ X=xk}=n1
负二项分布 P { X = k } = C k − 1 r − 1 p r ( 1 − p ) k − r P\{X=k\}=C_{k-1}^{r-1}p^r(1-p)^{k-r} P{ X=k}=Ck1r1pr(1p)kr

连续分布型
分布类型 分布律
均匀分布 U(a,b) f ( x ) = { 1 ( b − a ) a < x < b 0 其 他 f(x)=\begin{cases} \frac{1}{(b-a)} \quad a < x < b \\\\ 0 \quad 其他 \end{cases} f(x)=(ba)1a<x<b0
指数分布 Z ( α ) Z(\alpha) Z(α) f ( x ) = { α e − α x x > 0 0 x ≤ 0 f(x)=\begin{cases} \alpha e^{-\alpha x} \quad x > 0 \\\\ 0 \quad x\leq 0 \end{cases} f(x)=αeαxx>00x0
正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2

随机变量的数学期望:
  • 离散型: E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum_{k=1}^{\infty}x_kp_k E(X)=k=1xkpk
  • 连续性: E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X)=\int_{-\infty}^{\infty}xf(x)dx E(X)=xf(x)dx

数学期望的性质:

线性法则 E ( a X + b ) = a E ( X ) + b E(aX+b)=aE(X)+b E(aX+b)=aE(X)+b
加法法则 E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
乘法法则 E ( X Y ) = E ( X ) E ( Y ) , X Y 相 互 独 立 E(XY)=E(X)E(Y), \quad X Y 相互独立 E(XY)=E(X)E(Y),XY
柯西-许瓦茨不等式 ∥ E ( X Y ) ∥ 2 ≤ E ( X 2 ) E ( Y 2 ) \|E(XY)\|^{2} \leq E(X^2)E(Y^2) E(XY)2E(X2)E(Y2)

方差:
  • 记为 D ( X ) D(X) D(X) V a r ( X ) Var(X) Var(X) σ x 2 \sigma_x^2 σx2 D ( X ) = V a r ( X ) = E { [ X − E ( X ) ] 2 } D(X)=Var(X)=E\{[X-E(X)]^2\} D(X)=Var(X)=E{ [XE(X)]2}
  • 离散型: D ( X ) = ∑ K = 1 ∞ ( x k − E ( X ) 2 ) p k D(X)=\sum_{K=1}^{\infty}(x_k-E(X)^2)p_k D(X)=K=1(xkE(X)2)pk
  • 连续性: D ( X ) = ∫ − ∞ ∞ [ x − E ( X ) 2 ] f ( x ) d x D(X)=\int_{-\infty}^{\infty}[x-E(X)^2]f(x)dx D(X)=[xE(X)2]f(x)dx
  • 其他: D ( X ) = E ( X 2 ) − E ( X ) 2 D(X)=E(X^2)-E(X)^2 D(X)=E(X
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈乐乐happy

觉得对你有用的话可以打赏打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值