条件概率: P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(B∣A)=P(A)P(AB) 乘法公式: P ( A B ) = P ( A ) P ( B ∣ A ) P(AB)=P(A)P(B|A) P(AB)=P(A)P(B∣A) 全概率公式: P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A)=\sum_{i=1}^{n}P{(B_i)}P(A|B_i) P(A)=i=1∑nP(Bi)P(A∣Bi) 贝叶斯公式: P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) i = 1 , 2 , . . . n P(B_i|A)=\frac{P(B_i)P(A|B_i)}{\sum_{j=1}^{n}P(B_j)P(A|B_j)}\space \space \space \space i=1,2,...n P(Bi∣A)=∑j=1nP(Bj)P(A∣Bj)P(Bi)P(A∣Bi)i=1,2,...n 事件独立则有: P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) 其他: P ( A B ) = P ( B ) − P ( A ‾ B ) P(AB)=P(B)-P(\overline{A}B) P(AB)=P(B)−P(AB) P ( A ⋃ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \bigcup B)=P(A)+P(B)-P(AB) P(A⋃B)=P(A)+P(B)−P(AB)
离散分布型
分布类型
分布律
(0-1)分布
P { X = k } = p k ( 1 − p ) 1 − k P\{X=k\}=p^k(1-p)^{1-k} P{
X=k}=pk(1−p)1−k
二项分布
P { X = k } = C n k p k ( 1 − p ) n − k P\{X=k\}=C_n^kp^k(1-p)^{n-k} P{
X=k}=Cnkpk(1−p)n−k
几何分布
P { X = k } = p k ( 1 − p ) n − k P\{X=k\}=p^k(1-p)^{n-k} P{
X=k}=pk(1−p)n−k
超几何分布
P { X = k } = C M k C N − M n − k C N n P\{X=k\}=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n} P{
X=k}=CNnCMkCN−Mn−k
泊松分布
P { X = k } = λ k e − λ k ! P\{X=k\}=\frac{\lambda^ke^{-\lambda}}{k!} P{
X=k}=k!λke−λ
等可能分布
P { X = x k } = 1 n P\{X=x_k\}=\frac{1}{n} P{
X=xk}=n1
负二项分布
P { X = k } = C k − 1 r − 1 p r ( 1 − p ) k − r P\{X=k\}=C_{k-1}^{r-1}p^r(1-p)^{k-r} P{
X=k}=Ck−1r−1pr(1−p)k−r
连续分布型
分布类型
分布律
均匀分布 U(a,b)
f ( x ) = { 1 ( b − a ) a < x < b 0 其 他 f(x)=\begin{cases} \frac{1}{(b-a)} \quad a < x < b \\\\ 0 \quad 其他 \end{cases} f(x)=⎩⎪⎨⎪⎧(b−a)1a<x<b0其他
指数分布 Z ( α ) Z(\alpha) Z(α)
f ( x ) = { α e − α x x > 0 0 x ≤ 0 f(x)=\begin{cases} \alpha e^{-\alpha x} \quad x > 0 \\\\ 0 \quad x\leq 0 \end{cases} f(x)=⎩⎪⎨⎪⎧αe−αxx>00x≤0
正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2πσ1e−2σ2(x−μ)2
随机变量的数学期望:
离散型: E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum_{k=1}^{\infty}x_kp_k E(X)=∑k=1∞xkpk
连续性: E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X)=\int_{-\infty}^{\infty}xf(x)dx E(X)=∫−∞∞xf(x)dx
数学期望的性质:
线性法则
E ( a X + b ) = a E ( X ) + b E(aX+b)=aE(X)+b E(aX+b)=aE(X)+b
加法法则
E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
乘法法则
E ( X Y ) = E ( X ) E ( Y ) , X Y 相 互 独 立 E(XY)=E(X)E(Y), \quad X Y 相互独立 E(XY)=E(X)E(Y),XY相互独立
柯西-许瓦茨不等式
∥ E ( X Y ) ∥ 2 ≤ E ( X 2 ) E ( Y 2 ) \|E(XY)\|^{2} \leq E(X^2)E(Y^2) ∥E(XY)∥2≤E(X2)E(Y2)
方差:
记为 D ( X ) D(X) D(X) 或 V a r ( X ) Var(X) Var(X) 或 σ x 2 \sigma_x^2 σx2, D ( X ) = V a r ( X ) = E { [ X − E ( X ) ] 2 } D(X)=Var(X)=E\{[X-E(X)]^2\} D(X)=Var(X)=E{
[X−E(X)]2}
离散型: D ( X ) = ∑ K = 1 ∞ ( x k − E ( X ) 2 ) p k D(X)=\sum_{K=1}^{\infty}(x_k-E(X)^2)p_k D(X)=K=1∑∞(xk−E(X)2)pk
连续性: D ( X ) = ∫ − ∞ ∞ [ x − E ( X ) 2 ] f ( x ) d x D(X)=\int_{-\infty}^{\infty}[x-E(X)^2]f(x)dx D(X)=∫−∞∞[x−E(X)2]f(x)dx
其他: D ( X ) = E ( X 2 ) − E ( X ) 2 D(X)=E(X^2)-E(X)^2 D(X)=E(X