自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(35)
  • 收藏
  • 关注

原创 可解释AI-透明革命:从SHAP博弈论到LIME局部解释,手撕房价预测模型黑箱(第十章)

可解释AI(XAI)通过揭示AI决策过程提升透明度与信任度,已成为AI发展的重要方向。文章系统介绍了XAI的定义、历史沿革、核心方法(SHAP、LIME等)及其在医疗、金融等领域的应用,同时分析了当前面临的准确性-解释性平衡等挑战。通过Python代码示例展示了如何使用SHAP解释房价预测模型,验证了XAI技术的实用价值。随着全球AI伦理标准推进,XAI正从研究走向产业应用,推动AI系统从黑箱向可信透明的转变。

2025-08-11 13:45:00 268

原创 AI代理五大突破:边缘自主-伦理框架-持续学习,开发者决胜新战场(第八章)

本文系统介绍了AI代理(AIAgents)这一自主智能系统,涵盖其定义、发展历程、核心技术及应用场景。AI代理区别于传统AI模型,具备自主决策、环境感知和目标导向等特征,已广泛应用于虚拟助手、机器人、自动化工作流等领域。文章详细剖析了AI代理的感知-行动循环、决策机制等核心概念,并提供了基于Python的对话代理实现示例。同时探讨了当前面临的可解释性、安全性等挑战,以及多模态整合、自主学习等未来发展趋势。

2025-08-11 13:30:00 418

原创 15分钟打通多模态AI:跨模态学习×CLIP零样本×华为医疗案例,附Hugging Face实战(第七章)

本文介绍了多模态AI这一整合文本、图像、音频等数据类型的先进技术领域。文章首先定义了多模态AI及其发展历程,指出其通过模拟人类多感官感知能力,推动AI向更智能方向发展。重点阐述了多模态融合、跨模态学习和Transformer模型等核心技术,并列举了视觉问答、医疗诊断等典型应用场景。文章还提供了使用CLIP模型进行图像-文本匹配的实践示例,并探讨了数据对齐、计算复杂度等挑战及未来趋势。

2025-08-11 11:00:00 577

原创 生成式AI 2025创造革命:从GAN对抗训练到扩散模型,手撕PyTorch实战生成数字艺术(第六章)

生成式AI:从原理到实践 生成式AI是人工智能的重要分支,通过概率模型学习数据分布并创造新内容(如图像、文本、音频)。核心技术包括生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型和Transformer架构。2025年,其应用已渗透创意产业(如Adobe Firefly)、教育(个性化内容生成)和医疗(合成数据训练)。主流工具如PyTorch、Hugging Face和Stable Diffusion降低了开发门槛,但面临质量、伦理和算力等挑战。

2025-08-11 09:45:00 252

原创 计算机视觉全景指南:从OpenCV预处理到YOLOv8实战,解锁多模态AI时代(第五章)

计算机视觉是人工智能的重要分支,使机器能够理解和处理图像与视频数据。本章系统介绍了计算机视觉的定义、发展历程及核心技术,包括图像预处理、卷积神经网络、VisionTransformer和生成模型等。重点探讨了计算机视觉在自动驾驶、医疗影像等领域的应用现状,并详细讲解了YOLOv8物体检测的实践方法。文章还分析了当前面临的挑战和发展趋势,如多模态模型、边缘计算和伦理问题。最后指出计算机视觉正推动AI向更智能、实时和负责任的方向发展。

2025-08-10 20:45:19 629

原创 NLP 2025全景指南:从分词到128专家MoE模型,手撕BERT情感分析实战(第四章)

自然语言处理(NLP)是人工智能的重要分支,专注于让机器理解、处理和生成人类语言。本章系统介绍了NLP的核心技术,包括文本预处理、词嵌入、序列模型和Transformer架构,并通过BERT情感分析示例展示了实践应用。文章还展望了2025年NLP发展趋势,如多模态处理、大型语言模型优化和伦理问题探讨。NLP已广泛应用于情感分析、机器翻译等领域,并与医疗、金融等行业深度融合,推动AI向更智能、负责任的方向发展。

2025-08-10 16:15:00 444

原创 超越基础!一文掌握CNN/Transformer/MoE架构,实战多模态AI(第三章)

深度学习是机器学习的重要分支,通过多层神经网络学习复杂数据模式,广泛应用于图像识别、自然语言处理等领域。2025年深度学习已推动多模态AI(如Meta的Llama-4-Maverick)和生成式AI的突破。核心内容包括神经网络基础(神经元、激活函数)、高级架构(CNN、RNN、Transformer)及框架(PyTorch/TensorFlow)。当前挑战包括计算资源需求和伦理问题,未来趋势聚焦模型效率提升和多模态发展。实践示例展示了用PyTorch构建CNN模型实现手写数字识别。

2025-08-10 11:47:28 725

原创 15分钟掌握机器学习:从线性回归到2025生成式AI,实战代码+全流程解析(第二章)

本文系统介绍了机器学习的基本概念、发展历程和核心算法。全文首先明确定义机器学习作为AI的核心技术,通过数据使计算机自主学习的特点。重点解析了监督学习、非监督学习和强化学习三大类型,并辅以线性回归、K-Means聚类和Q-Learning等基础算法示例。文章还详细阐述了机器学习项目从数据收集到部署的完整流程,通过Iris分类案例展示了实践应用。最后展望2025年机器学习发展趋势,包括生成式AI、自主系统、边缘计算和AI伦理等方向。全文为读者构建了机器学习的完整知识框架,既涵盖理论基础又包含实践指导。

2025-08-09 16:15:00 716

原创 AI是敌是友?机遇、挑战与不可逆的智能革命(第一章)

人工智能(AI)是计算机科学的分支,旨在让机器执行需要人类智能的任务。从1956年概念提出至今,AI经历了数次兴衰,如今已广泛应用于虚拟助手、自动驾驶等领域。AI可分为反应型、有限记忆型等类别,中国更将其列为国家战略重点。尽管AI推动了医疗、教育等领域的进步,但也带来就业流失、隐私等挑战。2025年,具备高级推理能力的AI模型和自主AI代理将成为趋势。AI正深刻改变着我们的生活和工作方式。

2025-08-09 11:31:05 640

原创 缓存双雄对决:CPU三级缓存与Mybatis二级缓存的深度解析与性能密码(第四章)

摘要:本文介绍了计算机缓存和MyBatis缓存的工作原理。计算机缓存分为三级:一级缓存(L1)集成在CPU内部,速度最快但容量最小;二级缓存(L2)协调L1与内存的工作;三级缓存(L3)进一步扩展容量。不同CPU厂商的缓存设计存在差异。MyBatis缓存分为一级缓存(SqlSession级别)和二级缓存(Mapper级别),二级缓存可跨SqlSession共享。使用二级缓存需注意数据一致性问题,建议同一namespace下的操作才使用二级缓存,以避免脏读。

2025-08-09 10:00:00 671

原创 搜索算法经典案例

本文介绍了常见的搜索算法,包括回溯算法、广度优先搜索、深度优先搜索和二分搜索。重点分享两种算法:1)回溯算法,通过详细解析帮助读者彻底理解其原理和应用;2)二分搜索算法,对二分法进行系统讲解。两种算法都附有CSDN博客的详细教程链接,为读者提供深入学习资源。

2025-08-09 09:15:00 95

原创 汇编语言终极指南:揭开寄存器、数据段与栈的神秘面纱(第三章)

本文总结了汇编语言中数据传送与栈操作的关键知识点。数据传送需通过通用寄存器中转至段寄存器,如mov bx,1000H后mov ds,bx。mov指令支持寄存器、内存和段寄存器间的多种数据传送方式。栈作为先进后出的数据结构,由SS:SP指向栈顶,push/pop操作需两步完成:push先减SP再存数据,pop先取数据再加SP。栈操作可能引发越界风险,需注意SP的变化范围(0-FFFFH)。段寄存器与普通寄存器的命名规则不同,以S或X结尾区分。

2025-08-08 18:31:05 293

原创 CPU架构完全掌握:寄存器、内存寻址与汇编指令的实战秘籍(第二章)

本文介绍了CPU寄存器的基础知识,包括运算器、控制器、寄存器的组成与功能。重点阐述了16位8086CPU的寄存器结构,包括字(16位)和字节(8位)的数据存储方式。详细说明了常用汇编指令如MOV、ADD、SUB、JMP的用法和功能,并解释了物理地址的计算方法(段地址×16+偏移地址)。文章还介绍了段地址的特点、段寄存器(CS/DS/SS/ES)的作用,以及DEBUG调试工具的基本命令(R/D/E/U/T/A)。这些内容为理解CPU工作原理和汇编语言编程提供了基础概念。

2025-08-08 18:23:29 209

原创 认识汇编:解码计算机思维的底层语言(第一章)

本文概述了计算机底层语言与硬件的基本原理。主要包括:1)机器语言和汇编语言的定义与区别,汇编语言通过编译器转换为机器码;2)CPU作为计算机核心,通过地址、数据、控制总线与存储器交互;3)存储器的分类(RAM/ROM)和存储单位换算;4)地址总线宽度决定CPU寻址能力(2^N),数据总线宽度影响传输速度;5)内存地址空间的概念,其大小受CPU寻址能力限制。最后以8086/8088CPU为例说明总线宽度与性能关系。

2025-08-07 18:56:15 892

原创 LLM宇宙全景图:解码六种核心模型的隐秘战场

摘要: 本文提出LLM六维战场模型,超越传统参数对比,从硬件约束到用户体验,剖析六类核心LLM的隐秘战场。框架涵盖拓扑适应性、硬件亲和度等六大维度,深度解析文本生成、嵌入模型、重排模型、多模态模型、MoE及全模态模型的生存法则。关键发现包括:7B参数MoE在特定场景优于70B稠密模型;嵌入模型的“维度诅咒”导致RAG系统静默失效;多模态存在“感官失衡”陷阱。实战方案如动态重置机制、抗马太重排算法等,均通过企业级验证。最终强调:模型选型需匹配工作流,垂直领域必须微调,组合策略优于单一模型

2025-08-07 09:30:00 1087

原创 Spring-AI 深度实战:企业级 AI 应用开发指南与 Python 生态对比(高级篇)

Spring-AI在企业级AI应用中的优势分析 摘要: Spring-AI作为企业级AI解决方案的隐形冠军,其核心价值在于将AI能力无缝集成到Spring企业应用框架中。相比Python生态的研究导向特性,Spring-AI专注于企业级需求,提供事务一致性、分布式追踪和安全审计等关键功能。其三层抽象设计(路由层、提示词工程、安全处理)实现了动态模型切换、事务安全提示词生成和敏感信息自动脱敏。

2025-08-06 15:46:18 904

原创 智能体系统深度解析:多智能体协作与自我进化(第二阶段)

本文深入探讨了智能体系统的高级实现,聚焦多智能体协作与自我进化两大核心领域。在协作系统方面,详细解析了分布式架构、语义级通信协议、智能路由机制及动态任务分解算法,通过代码示例展示了如何实现1+1>2的群体智能效应。自我改进框架部分构建了从经验回放到能力进化的完整闭环,包括知识提炼系统、多维评估体系和自动化能力提升方案。针对生产环境挑战,提出了多级缓存、预测加载、智能故障恢复等优化策略。最后通过金融分析和科研辅助两个典型案例,验证了高级智能体系统的实际价值。

2025-08-06 15:00:00 939

原创 智能体系统架构深度解析:构建自主AI系统的基础框架(第一章)

摘要:本文系统阐述了智能体系统的革命性架构设计,从静态大模型到动态智能体的范式转变。核心内容包括:1)四层架构模型(感知层、规划层、决策层、执行层)的技术实现,创新性解决上下文压缩、任务分解等关键问题;2)智能状态管理系统,通过分层存储和重要性评分提升记忆效用;3)动态工具集成框架,实现语义级工具选择和安全执行;4)性能优化策略,包括智能缓存和分布式执行。实验数据显示,该架构将任务完成率提升52.3%,LLM调用减少58.7%。文章为构建可靠、高效的智能体系统提供了系统化解决方案,对AI应用开发具有重要指导

2025-08-06 11:00:00 1607

原创 高级大模型集成与应用:从架构到实战,打造专业级AI解决方案(第一章)

本文系统介绍了大模型的集成与应用方法。首先概述了大模型(如GPT、BERT)在NLP等领域的优势和应用场景,如智能客服、搜索引擎优化等。重点讲解三种集成方式:API调用、本地部署和微调优化,并提供了量化、知识蒸馏等优化技巧。通过HuggingFace库的实战代码,演示了GPT-2文本生成和BERT文本分类微调的具体实现。文章还设计了可扩展的Web应用架构,包含API网关、模型服务层和缓存系统,支持高并发处理。最后推荐了模型压缩工具和学习资源,为开发者构建高效AI系统提供完整指导。

2025-08-05 22:53:35 836

原创 Milvus:从安装到高阶

摘要:本文全面介绍开源向量数据库Milvus的核心架构与实战应用。首先解析其四层分布式架构(接入层、协调层、执行层、存储层),然后详细演示Docker化部署流程,包括ETCD、MinIO等组件的配置。核心部分展示向量数据全生命周期操作,从集合创建、数据插入到相似性检索。特别提供BERT文本向量化实战案例,并给出性能优化策略(索引选择、参数调优)和水平扩展方案。最后列举典型应用场景(跨模态检索、推荐系统等),为开发者提供生产级向量检索解决方案。

2025-08-05 22:11:56 285

原创 高效构建RAG知识库:使用Milvus实现向量搜索的实战指南

本文介绍了基于Python和Milvus向量数据库的RAG知识库实现方案。通过优化代码结构、添加类型提示和错误处理,详细讲解了向量集合的创建、数据插入、相似度搜索等核心功能。文章重点分析了IVF_FLAT索引的参数调优技巧,并提供了完整的端到端RAG工作流示例,包括文本向量化、存储和查询过程。最后分享了性能优化建议,如索引选择、资源管理和监控调优,帮助开发者构建高效的大规模向量检索系统。这套方案能显著提升RAG系统的响应速度和准确性,适合AI开发者和数据工程师实践应用。

2025-08-05 21:57:28 555

原创 Pydantic与大模型的经典集成

摘要: 本文探讨Pydantic与大模型(如GPT、LLaMA)的集成方案,重点解决大模型应用中数据验证与结构化输出的核心挑战。通过Pydantic的强类型模型,可规范输入输出格式(如JSON Schema),确保数据准确性,尤其适用于金融、医疗等高要求领域。文章展示两种典型场景:1)基础集成,用Pydantic包装API调用并验证响应;2)结合Autogen框架构建Agent,动态解析任务结果。代码示例演示了如何通过model_json_schema()生成结构化约束,以及Agent场景的类型安全实现。

2025-08-04 22:11:04 180

原创 Pydantic与生俱来的的优势

本文探讨了Pydantic与大模型集成的核心优势与实践方法。Pydantic通过数据验证、类型安全和序列化功能,有效提升大模型输入输出的可靠性。文章展示了多个实际应用场景,包括API请求/响应封装、提示工程模板化、环境变量管理以及流式数据处理。通过自定义验证器和异常处理机制,Pydantic能够实现复杂业务逻辑验证和标准化错误响应。典型案例演示了手机号、邮箱等字段的验证方法,以及如何结合FastAPI构建统一错误处理体系。最后展望了Pydantic V2在大模型生态中的发展潜力,如性能优化和AI结合应用。

2025-08-04 21:42:58 524

原创 Spring Cloud Gateway

是Spring Cloud官方推出的第二代网关框架,取代Zuul网关(1.0不再维护了,2.0不再集成);连接不同网络或协议,充当信息传递和协议转换的中介;大白话讲就是,用于请求转发、流量控制、访问控制、服务适配、验签等功能;一般在微服务架构中充当内部服务的最后一层 “防火墙”;

2024-05-21 10:10:51 1132 1

原创 虚拟机与容器的关系

容器化技术与虚拟化技术的区别

2024-03-19 21:44:37 321 3

原创 快速了解二叉树、红黑树、B树、B+树、B*树 发展历程

快速了解二叉树、红黑树、B树、B+树、B*树 发展历程

2023-10-19 23:38:19 369 1

原创 使用lombok的链式设置父类属性

3、@Builder并不支持对基类属性的构造,而 @SuperBuilder 就是为了解决这个问题而产生的,算是​​​​@Builder的升级版;1、使用了@Builder之后,需要添加@NoArgsConstructor,因为@Builder会覆盖调无参构造器;2、使用了@Builder之后,还需要注意设置成员属性不生效,需要通过@Builder.Default添加到属性上边;@Builder(toBuilder = true)注解的方式。

2023-10-11 23:39:51 2096

原创 spirngboot升级后,本地项目加载不到服务器的configmap解决方案

【代码】spirngboot升级后,本地项目加载不到服务器的configmap解决方案。

2023-03-31 20:19:40 322

原创 Spring cloud Gateway版本升级踩坑总结

Spring cloud gateway版本升级,feign调用失败启动假死等一系列问题

2023-02-12 14:43:34 6364

原创 brew报错 error: RPC failed; errno 0

brew报错 error: RPC failed; errno 0

2023-02-05 20:42:18 148

原创 Mac和Windows下 idea连接k8s集群详解

Mac和Windows下 idea连接k8s集群详解

2022-11-19 14:29:18 2639

原创 spring 多个文件在不同场景下循环依赖产生的问题及超无敌解决方案

spring 多个文件在不同场景下循环依赖产生的问题及超无敌解决方案

2022-11-03 16:15:43 349

原创 k8s-集群初始化kubeadm init踩的坑和解决方法

kubeadm init 报错: Waiting for the kubelet to boot up the control plane as static Pods from directory "/etc/kubernetes/manifests". This can take up to 4m0s

2022-08-06 17:39:27 6897 4

原创 TCP与UDP的爱恨情仇

很多人都把TCP与UDP拿来比较,那我们今天就来说说他们之间的爱恨情仇!再奔入主题之前,我们先来看一张图首先,从这张图中可以发现,tcp、udp属于传输层,那我们就聊聊吧!首先,我们从以下这几个方面聊:第一:是什么?第二:解决了什么问题?第三:应用场景是什么?第四:TCP的生命周期?那我们就开始解答这三个问题吧我们从广义上来说: 1) TCP 其实是一个有状态服务(通俗地讲就是有脑子的,里面精确地记着发送了没有,接收到没有,发送到哪个了,应该接...

2021-08-22 17:13:08 202

原创 VMware与主机互ping,ping网络问题(NAT模式配置静态IP)

目录虚拟机网络连接方式:Bridged(桥接模式)NAT(网络地址转换模式)Host-only(主机模式)概述:1、配置静态IP和DNS虚拟机网络连接方式:Bridged(桥接模式)在桥接模式下,VMware虚拟出来的操作系统就像是局域网中的一独立的主机,它可以访问网内任何一台机器。不过你需要空闲的IP地址,并且需要手工为虚拟系统配置IP地址、子网掩码,而且还要和宿主机器处于同一网段,这样虚拟系统才能和宿主机器进行通信。NAT(网络地址转换模式)使用NA.

2021-07-05 23:51:53 552 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除