MAE:平均绝对误差
直接计算模型输出与真实值之间的平均绝对误差
Mean Absolute Error
MSE:均方误差:
是反映估计值与被估计量之间差异程度的一种度量。
Mean Squared Error
MSLE:均方log差(Mean Squared Log Error)
RMSE:均方根误差:
观测值与真值偏差的平方和与观测次数m比值的平方根,用来衡量观测值同真值之间的偏差。
Root Mean Squared Error
RMSLE:均方根log误差
Root Mean Squared Log Error
MAPE:平均绝对百分比误差
不仅考虑预测值与真实值误差,还考虑了误差与真实值之间的比例。
Mean Absolute Percentage Error
特点:
以百分比形式表示误差
易于理解和解释
尺度无关(scale-independent)
缺点:
当实际值为0或接近0时会出现问题
对小的实际值过度敏感
不对称性:高估和低估的惩罚不同
对于间歇性需求(有很多零值)的时间序列表现不佳
sMAPE:Symmetric Mean Absolute Percentage Error
wMAPE:Weighted Mean Absolute Percentage Error
MASE:平均平方百分比误差
Mean Absolute Scaled Error
特点:
使用简单随机游走(naive forecast)作为基准
无单位,便于比较不同序列的预测性能
对称性:高估和低估得到相同惩罚
能很好处理间歇性需求和零值
解释:
MASE < 1:预测比简单随机游走好
MASE = 1:预测与简单随机游走相当
MASE > 1:预测比简单随机游走差
MSPE: Mean Squared Prediction Error
MDA:Mean Directional Accuracy
MAD:Mean Absolute Deviation
MPD:Mean Poisson Deviance
MGD:Mean Gamma Deviance
R2 : 决定系数
SSE:和方误差
D2:D2 Absolute Score
Explained Variance Score:Explained Variance Score