bert做文本摘要_BERT-WWM

中文BERT-WWM是BERT的升级版,采用全词掩蔽策略,缓解了原始BERT预训练中部分Wordpiece被mask的问题。此模型在多项NLP任务上表现出显著提升,包括机器阅读理解、自然语言推理、情感分类等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

acc946b749d85e0e876366a8a23ece51.png

New May 31st, 2019: Whole Word Masking Models (google-research)https://github.com/google-research/bert

Whole Word Masking (wwm)是谷歌在2019年5月31日发布的一项BERT的升级版本,主要更改了原预训练阶段的训练样本生成策略。

简单来说,原有基于WordPiece的分词方式会把一个完整的词切分成若干个子词,在生成训练样本时,这些被分开的子词会随机被mask。 在Whole Word Masking (wwm)中,如果一个完整的词的部分WordPiece子词被mask,则同属该词的其他部分也会被mask。

309d61b9d6cf1cf7d0a1acfa0e066c77.png

( 需要注意的是,这里的mask指的是广义的mask(替换成[MASK];保持原词汇;随机替换成另外一个词),并非只局限于单词替换成[MASK]标签的情况。)

中文BERT-WWM

2019年哈工大和科大讯飞联合发表中文BERT-WWM模型的论文。

论文链接:https://arxiv.org/pdf/1906.08101.pdf

f8cc47b30c6f2633cb0c738d6b0e12a8.png

ca3205e30c8b3ff88fb2b9d2fe23a799.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值