深度学习--生成式对抗网络--DCGAN/WGAN/WGAN-GP/LSGAN/BEGAN算法理论

本文介绍了生成式对抗网络的基础概念,包括无监督学习特性、判别器与生成器的博弈和训练阶段。此外,还讨论了GAN的优缺点,特别是其损失函数。接着,文章详细阐述了DCGAN、WGAN、WGAN-GP、LSGAN和BEGAN等优化算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一 生成式对抗网络基础

1 生成式对抗网络的概念

1)网络属于无监督学习

2)网络中判别器D与生成器G的相互博弈,其纳什均衡为D(G(Z))=0.5

3)网络的训练阶段分为两个阶段

2 生成式对抗网络的优缺点

1)优点

2)缺点

3 生成式对抗网络的损失函数

1)判别器D损失函数(使用交叉熵损失函数)

2)生成器G损失函数(使用交叉熵损失函数)

3)将判别器D和生成器G损失函数结合(极大极小算法:一方优势最大,另一方优势最小)

二 生成式对抗网络优化

1 DCGAN(Deep Convolution NN for GAN)

1)生成器G(使用反卷积)

2)判别器D

2 WGAN(Wasserstein for GAN)

3 WGAN-GP(WGAN for Gradient Puishment)

4 LSGAN(Least Square for GAN)

5 BEGAN(Boundary Equilibrium for GAN)


一 生成式对抗网络基础

1 生成式对抗网络的概念

1)网络属于无监督学习

2)网络中判别器D与生成器G的相互博弈,其纳什均衡为D(G(Z))=0.5

  • 判别器D:是一个二分类器,真实样本x期望输出1,生成样本期望输出0
  • 生成器G:将噪音数据z尽量生成真实样本分布,以期望判别器D输出1

3)网络的训练阶段分为两个阶段

  • 第一阶段:冻结生成器G,使用真实样本x和生成样本G(z)训练判别器D
  • 第二阶段:冻结判别器D,训练生成器G生成假样本能力

注意:冻结是指不进行反向传播,只进行正向传播

2 生成式对抗网络的优缺点

1)优点

第一点:GAN是一个非常灵活的设计框架,并且框架简单

各种类型的损失函数都可以整合到GAN中,针对不同的任务,设计不同的损失函数,实现在GAN框架下学习和优化

第二点:真实数据分布的概率密度不可计算

传统的生成模型无法在真实数据分布上进行学习,GAN依靠内部博弈机制,其生成器可以学习出真实数据的分布

第三点:避免马尔科夫链式的学习

传统的生成模型一般需要马尔科夫链式的采样和推断(是一个计算复杂度高的过程),直接进行采样和推断,从而提高效率

2)缺点

网络模型具有不稳定性

实际中很难将判别器D与生成器G训练到纳什均衡状态(即整体最优状态)

3 生成式对抗网络的损失函数

注意:真实样本x默认标签为1,生成样本G(z)默认标签为0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值