HDU 1254 推箱子

本文探讨了一种结合广度优先搜索(BFS)与深度优先搜索(DFS)解决经典推箱子问题的方法。通过以箱子为起点进行BFS寻找最短路径,并用DFS验证人是否能移动到箱子后方,有效地解决了问题。提供了具体实现代码及测试案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个非常有意思的 BFS+DFS。附 数据。


本来今天的任务是多重背包,结果为了帮别人找WA点,自己也坑在这道题上了。


最后想了一组自己都没过的数据…发现想法都不正确…果断换思路了。


正确思路是以箱子为起点做BFS找最短。每次移动的时候DFS推断人能不能移动到箱子的后面。


開始就我写一个BFS,什么数据都过了。这组过不了

1
7 4
0 0 0 0
0 0 1 0
0 2 0 3
1 4 1 0
1 0 1 0
1 0 1 0
1 0 0 0

实际上答案是2.

我写的是总步数最短时,箱子的最短步数。给WA了。


然后我就换思路了,注意状态要用四维,由于可能存在要先把箱子推过去,然后再推回来的情况。


3 6
1 1 1 1 1 1
0 0 0 1 0 0
0 0 2 4 0 3

比方这样。

实际上是5.


#include<cstdio>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<queue>
#include<map>
#include<stack>
#include<iostream>
#include<list>
#include<set>
#include<cmath>
#define INF 0x7fffffff
#define eps 1e-6
using namespace std;
int g[8][8];
int xx[]={1,-1,0,0};
int yy[]={0,0,-1,1};
int n,m;
struct node
{
    int x,y,lv;
};
node box,man,over;
bool vis[8][8];
bool ok;
void dfs(int x1,int y1,int x2,int y2)
{
    if(ok)return;
    if(x1==x2&&y1==y2)
    {
        ok=1;
        return;
    }
    int x,y;
    for(int k=0;k<4;k++)
    {
        x=x1+xx[k];
        y=y1+yy[k];
        if(x>=n||x<0||y>=m||y<0||g[x][y]==1||vis[x][y])
            continue;
        vis[x][y]=1;
        dfs(x,y,x2,y2);
    }
}

int bfs()
{
    bool way[8][8][8][8];
    queue<node>q;
    queue<node>human;
    memset(way,0,sizeof(way));
    q.push(box);
    human.push(man);
    way[box.x][box.y][man.x][man.y]=1;
    node tmp,now,ma;
    while(!q.empty())
    {
        tmp=q.front();q.pop();
        ma=human.front();human.pop();
        if(tmp.x==over.x&&tmp.y==over.y)return tmp.lv;
        for(int k=0;k<4;k++)
        {
            int x=tmp.x+xx[k];
            int y=tmp.y+yy[k];
            if(x>=n||x<0||y>=m||y<0||g[x][y]==1||way[x][y][tmp.x][tmp.y])
            continue;

            int rex=tmp.x-xx[k];
            int rey=tmp.y-yy[k];
            if(rex>=n||rex<0||rey>=m||rey<0||g[rex][rey]==1)
            continue;

            memset(vis,0,sizeof(vis));
            ok=0;
            vis[tmp.x][tmp.y]=1;
            //printf("box %d %d -> %d %d\n",tmp.x,tmp.y,x,y);
            //printf("human %d %d -> %d %d\n",ma.x,ma.y,rex,rey);
            //system("pause");
            dfs(ma.x,ma.y,rex,rey);
            if(!ok)
            continue;

            now.x=x,now.y=y,now.lv=tmp.lv+1;
            way[x][y][tmp.x][tmp.y]=1;
            q.push(now);
            human.push(tmp);

        }
    }
    return -1;
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
        {
            scanf("%d",&g[i][j]);
            if(g[i][j]==2)
                box.x=i,box.y=j,box.lv=0;
            else if(g[i][j]==3)
                over.x=i,over.y=j;
            else if(g[i][j]==4)
                man.x=i,man.y=j;
        }
        int tmp=bfs();
        printf("%d\n",tmp);
    }
}



内容概要:本文介绍了基于SMA-BP黏菌优化算法优化反向传播神经网络(BP)进行多变量回归预测的项目实例。项目旨在通过SMA优化BP神经网络的权重和阈值,解决BP神经网络易陷入局部最优、收敛速度慢及参数调优困难等问题。SMA算法模拟黏菌寻找食物的行为,具备优秀的全局搜索能力,能有效提高模型的预测准确性和训练效率。项目涵盖了数据预处理、模型设计、算法实现、性能验证等环节,适用于多变量非线性数据的建模和预测。; 适合人群:具备一定机器学习基础,特别是对神经网络和优化算法有一定了解的研发人员、数据科学家和研究人员。; 使用场景及目标:① 提升多变量回归模型的预测准确性,特别是在工业过程控制、金融风险管理等领域;② 加速神经网络训练过程,减少迭代次数和训练时间;③ 提高模型的稳定性和泛化能力,确保模型在不同数据集上均能保持良好表现;④ 推动智能优化算法与深度学习的融合创新,促进多领域复杂数据分析能力的提升。; 其他说明:项目采用Python实现,包含详细的代码示例和注释,便于理解和二次开发。模型架构由数据预处理模块、基于SMA优化的BP神经网络训练模块以及模型预测与评估模块组成,各模块接口清晰,便于扩展和维护。此外,项目还提供了多种评价指标和可视化分析方法,确保实验结果科学可信。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值