到目前为止,讨论的都是线性问题,这里采用了两个基本假设:
(1)材料的应力-应变关系是线性的,{σ}=[D]{ε}
(2)结构的应变-位移关系是线性的,{ε}=[B]{δ}
非线性有限元分析方法大同小异,以材料非线性为例:
(1)当材料的应力-应变关系是非线性时,刚度矩阵不是常数,与位移值有关,可记为:[K(δ)]
(2)此时,结构的整体平衡方程为:{Ψ}=[K(δ)]{δ}-{P}=0
增量法
采用增量法分析非线性问题时,把荷载划分为许多荷载增量,这些增量可以相等,也可以不等。每次施加一个荷载增量,在每一步计算中,假定方程是线性的,刚度矩阵[K]是常数。在不同的荷载增量中,刚度矩阵可以具有不同的数值,并与应力-应变关系相对应。每步施加一个荷载增量{△P},得到一个位移增量{△δ},累积后即得到位移{δ}。
增量法是用一系列线性问题去近似非线性问题,实质上是用分段线性的折线去代替非线性曲线。

把荷载分为n个增量,所以总荷载为:

在施加第i个荷载增量后,荷载为:

每一个荷载增量





至于如何由荷载增量



一、始点刚度法
设第i-1步末的应力









根据第i步的总应力



如果是最后一级荷载,则结束运算;如果不是,则进行下一步计算。
如果

{Ψ}=[K(δ)]{δ}-{P}=0
而实际上