sample 算子_Spark中算子合辑

本文详细介绍了Spark中的算子,包括Transformations算子如filter、map、sample,Action算子如count、take、reduce,以及控制算子如cache、persist和checkpoint。Transformations是延迟执行的,Action会触发数据计算。文章强调了持久化级别和算子使用注意事项,以及checkpoint如何切断依赖并优化执行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3d89d36a8e39f4b5fc79504686dfa20c.png

Spark中算子简介

Transformations算子

Transformations类算子是一类算子(函数)叫做转换算子,如map,flatMap,reduceByKey等,是延迟执行,也叫懒加载执行

  1. filter,过滤符合条件的记录数,true保留,false过滤掉
  2. map,将一个RDD中的每个数据项,通过map函数映射变为一个新的元素。特点:输入一条。输出一条数据
  3. flatMap,先map后flat,与map类似,每个输入项可以映射为0到多个输出项
  4. sample,随机抽样算子,根据传进去的小数按比例进行又放回或者无放回的抽样
  5. reduceByKey ,将相同的Key根据相应的逻辑进行处理
  6. sortByKey/sortBy,作用在K,V格式的RDD上,对key进行升序或者降序排序
  7. join/ leftOuterJoin/ rightOuterJoin/ fullouterjoin 作用在K,V格式的RDD上,根据K进行连接,对(K,V)join(K,W)返回(K,(V,W)),join后的分区数与父分区数多的那个相同
  8. union 合并两个数据集,数据集类型要一致,,返回新的RDD的分区是合并RDD分区数的总和
  9. intersection 取两个数据集的交集
  10. subtract 取两个数据集的差集
  11. mapPartition 与map类似,遍历的单位是每个partition上的数据
  12. distinct(底层是map+reduceByKey+map) 去重
  13. cogroup 当调用类型(K,V)和(K,W)的数据上时,返回一个数据集(K,(Iterable<V>,Iterable<W>))
  14. mapParttionWithIndex 类似于mapPartitions 除此之外还会携带分区的索引值
  15. repartition 增加或减少分区,会产生shuffle
  16. coalesce 常用来减少分区,第二个参数是减少分区过程中是否产生shuffle,true为产生shuffle,false不产生shuffle,默认是false。。如果coalesce设置的分区数比原来的RDD分区数还多的话,第二个参数设置为false不会起作用,如果设置成true,效果和repartition一样,即repartition(numPartitions)=coalesce(numPartitins,true)
  17. groupByKey 作用在K,V格式的RDD上,根据Key进行分组,作用在(K,V)返回(K,Iterable<V>)
  18. zip 将两个RDD中的元素(KV格式/非KV格式)变成一个KV格式的RDD,两个RDD个数必须相同
  19. zipWithIndex 该函数将RDD中的元素和这个元素在RDD中的索引号(从0开始)组合成(K,V)对

Action行动算子

Action类算子是触发执行,一个application应用程序中有几个action类算子执行,就有几个runjob运行

  1. count ,返回数据集中的元素数,会在结果计算完成后回收到Driver端
  2. take(n) ,返回一个包含数据集前n个元素的集合
  3. first first=take(1),返回数据集中的第一个元素
  4. foreach,循环遍历数据集中的每个元素
  5. collect,将计算结果回收到Driver端
  6. foreachPartition 遍历的数据是每个partition的数据
  7. countByValue 根据数据集每个元素相同的内容来计数,返回相同内容的元素对应的条数
  8. reduce 根据聚合逻辑,聚合数据集中的每个元素

控制算子(持久化算子)

三种控制算子,都可将RDD持久化,持久化的单位是partition,cache和persist都是懒执行,必须要有action算子出发执行,checkpoint算子不仅能将RDD持久化到磁盘上,还能切断RDD之间的依赖关系

  1. cache ,默认将RDD的数据持久化到内存中,底层是persist的stroagelevel. MEMORY_ONLY级别
  2. persist: 可以指定持久化的级别,最常用的是MEMORY_ONLY和MEMORY_AND_DISK,

*cachepersist的注意事项

A、 cache和persist都是懒执行,必须有一个action类算子触发执行

B、 cache和persist算子的返回值可以赋值给一个变量,在其他job中直接使用这个变量 就是使用持久化的数据量,持久化的单位是partition

C、 cache和persist算子后不能立即紧跟action算子

3. checkpoint:将RDD持久化到磁盘,还可以切断RDD之间的依赖关系

Checkpoint的执行原理

A. 当RDD的job执行完毕后,会从finalRDD从后往前回回溯

B. 当回溯到某一个RDD调用了checkpoint方法,会对当前的RDD做一个标记

C. Spark框架会自动启动一个新的job们重新计算这个RDD的数据,将数据持久化到HDFS上

优化:对RDD执行checkp之前,最好对这个RDD限制性cache,这样新启动的job只需要将内存中的数据拷贝到HDFS上就可以,省去了重新计算这一步

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值