简介:本工具箱是专为脑电(EEG)信号处理和分析设计的MATLAB工具集第二部分。它为用户提供了一系列用于脑电信号预处理、特征提取、分类以及其他高级分析的函数和脚本。EEG信号处理技术广泛应用于神经科学、临床诊断等。工具箱支持数据导入与预处理、时频分析、节律分析、事件相关电位(ERP)研究、源定位、特征提取、分类与聚类以及结果可视化等功能。用户需结合工具箱的第一部分,按文档指导进行使用,以便充分发挥工具箱的功能。
1. MATLAB环境与EEG信号处理概述
1.1 MATLAB环境简介
MATLAB(矩阵实验室)是一种高性能的数值计算环境和第四代编程语言,广泛应用于工程计算、数据分析、算法开发等领域。在脑电图(EEG)信号处理领域,MATLAB提供了一系列工具箱,如Signal Processing Toolbox、Bioinformatics Toolbox等,这些工具箱极大地简化了EEG数据的分析和可视化工作。熟练掌握MATLAB环境,对进行深入的EEG信号处理至关重要。
1.2 EEG信号的特点
脑电图(EEG)信号是大脑神经元活动的电生理记录,具有多通道、高时间分辨率、复杂的非线性和非平稳性特点。EEG信号反映了大脑不同区域的电活动,其波形和频率成分随大脑状态的变化而变化。对EEG信号的分析可以揭示认知过程、情绪变化、睡眠周期等大脑活动规律。
1.3 MATLAB在EEG信号处理中的应用
在EEG信号处理中,MATLAB主要用于实现各种数字信号处理算法,包括但不限于滤波、波形分割、频谱分析、去噪、统计分析等。此外,MATLAB支持矩阵和数组操作,适合处理大规模的EEG数据集。MATLAB强大的绘图功能,也让数据的可视化和结果的展示变得更加直观和便捷。通过编写脚本和函数,可以自动化处理流程,提高工作效率。随着MATLAB版本的更新,其在EEG信号处理领域的应用也日益增多,为研究者提供了更多便利。
2. EEG数据的导入与预处理模块
2.1 数据导入的方法和步骤
2.1.1 常见的EEG数据格式和读取技巧
在EEG研究中,数据格式多样化,常见的有EDF(European Data Format)、BDF(BioSemi Data Format)、BrainVision Analyzer的.vhdr格式等。每种格式都有特定的结构和编码方式,了解这些格式对于有效地导入EEG数据至关重要。
以MATLAB为例,常用的导入方法包括使用MATLAB自带的函数或者专门的工具箱。例如,使用BioSemi提供的 actxserver
函数导入BDF文件,或者利用EEGLAB等工具箱提供的函数导入多种格式的数据。
在处理不同格式的数据时,我们通常需要关注数据的采样率、通道信息、事件标记、注释等关键信息。这些信息对于后续的分析和处理至关重要。例如,EEGLAB的 pop_loadheader
函数能够加载多种数据格式的头部信息,便于分析人员快速掌握数据概况。
2.1.2 数据导入过程中的常见问题及解决方案
在导入EEG数据时,常见问题包括文件损坏、格式不支持、数据通道数与期望不符等。这些问题可能会影响数据的导入,甚至导致分析工作无法进行。
针对这些问题,一些常见的解决方案包括:
- 验证数据文件的完整性。例如,检查文件的MD5哈希值,确保文件未在传输或存储过程中损坏。
- 如果遇到格式不支持的情况,可能需要寻找或开发相应的数据转换工具将数据转换为可用格式。
- 在数据导入过程中,如果发现通道数与预期不符,需要仔细检查原始数据的通道配置是否正确,或是否在之前的处理步骤中丢失了通道信息。
2.2 数据预处理的技术和策略
2.2.1 去噪、滤波和基线校正等基本处理
EEG数据往往伴随噪声,如工频干扰、肌肉噪声等。有效的去噪策略对于后续分析的准确性至关重要。常用的方法包括:
- 信号滤波:使用带通、带阻或陷波滤波器来去除特定频率范围的噪声。例如, eegfiltnew
函数可用于MATLAB环境下的信号滤波。
- 自适应滤波器:在某些情况下,如去除工频干扰,自适应滤波器(如 filtfilt
)可以更有效地去除噪声。
基线校正通常用于去除脑电活动中的非特异性趋势。 eegfilt
函数在MATLAB中用于基线校正,通过指定一个基线窗口,将整个信号相对于此窗口进行调整,使基线在预设窗口内为零。
2.2.2 艺术和伪迹识别及处理方法
艺术(Artifact)是指在EEG记录中由非脑电活动引起的信号,常见的有眨眼、肌电、心电等。这些伪迹如果不处理,会严重影响后续分析结果。
识别伪迹常用方法包括:
- 目视检查:通过观察波形图识别明显的伪迹。
- 自动检测:使用统计方法或特定算法(如 eegfiltnew
)自动识别伪迹。
处理伪迹通常有以下几种方法:
- 剔除:将包含伪迹的段落从数据中剔除。
- 艺术去除算法:比如独立分量分析(ICA),使用如 runica
函数在MATLAB中执行,可将混合EEG信号中的伪迹成分分离出来。
至此,我们介绍了EEG数据导入和预处理的基本概念、常见问题及其解决方案,并详细探讨了去噪、滤波、基线校正以及艺术和伪迹的识别与处理方法。接下来,在第三章中,我们将深入探讨EEG时频分析方法及其在信号处理中的具体应用。
3. 时频分析方法在EEG中的应用
EEG信号因其非平稳特性,在时域和频域上展现不同的动态变化,要求分析方法能够同时在时间和频率上提供信息。时频分析方法满足了这一需求,是脑电EEG信号分析中极为重要的工具。本章中,我们将介绍短时傅里叶变换(STFT)和小波变换(WT),以及Hilbert-Huang变换(HHT)在EEG信号处理中的应用。
3.1 短时傅里叶变换(STFT)技术
3.1.1 STFT的基本原理和算法
短时傅里叶变换是将信号通过一系列窗函数加窗,然后在每一个时间窗口内进行傅里叶变换,从而获得信号在不同时间段的频域特征。该方法将时间信号变换成时间-频率表示,适用于分析具有时间局部性的非平稳信号。
STFT的数学表达可以概括为:
[ STFT(t,f) = \int_{-\infty}^{\infty}x(\tau)g(\tau-t) e^{-j2\pi f \tau} d\tau ]
其中,(x(t))是原始EEG信号,(g(t))是窗函数,(t)和(f)分别代表时间和频率。
3.1.2 STFT在EEG信号处理中的实操应用
在MATLAB环境中,我们可以利用内置函数 spectrogram()
来实现STFT。以下是一个简单的代码示例:
% 假设 eegData 是已经导入的EEG数据
% fs 是采样频率
nwin = 256; % 窗口长度
noverlap = 128; % 窗口重叠数
window = hamming(nwin); % 窗口函数
f, t, S = spectrogram(eegData, window, noverlap, nwin, fs);
% 绘制时频图
figure;
surface(t, f, 10*log10(abs(S)));
axis xy;
xlabel('时间 (s)');
ylabel('频率 (Hz)');
zlabel('功率/10*log10(幅度)');
title('EEG信号的时频分析图');
执行上述代码后,我们可以得到一个时频图,它显示了不同时间点信号的频率分布情况。这对于分析例如Alpha波在放松状态下的强度变化等EEG节律非常有帮助。
3.2 小波变换与HHT分析
3.2.1 小波变换在EEG信号分析中的优势与实现
小波变换通过使用一系列具有不同尺度和位置的小波函数来分析信号,它在时域和频域上都具有良好的局部性,是分析非平稳信号的强大工具。小波变换相对于傅里叶变换的一个优势在于它提供了从粗到细的多分辨率分析。
小波变换的连续形式如下:
[ W(a,b) = \int_{-\infty}^{\infty} x(t) \psi_{a,b}^* (t) dt ]
其中,(\psi(t))是母小波函数,(a)是缩放因子,(b)是平移因子。
在MATLAB中,我们可以利用 cwt()
函数对EEG信号进行连续小波变换,示例如下:
% 使用MATLAB内置的连续小波变换函数
[waveletcoeff, frequencies] = cwt(eegData, fs);
% 绘制小波变换结果
figure;
mesh(abs(waveletcoeff));
axis tight;
xlabel('时间');
ylabel('尺度');
title('EEG信号的小波变换表示');
3.2.2 Hilbert-Huang变换(HHT)在非线性信号处理中的应用
HHT是一种以经验模态分解(EMD)为基础的自适应时频分析方法,能有效处理非线性和非平稳信号。EMD将信号分解为一系列本征模态函数(IMF),这些IMF函数自适应地反应信号的固有频率特性。
HHT的步骤通常包括:
1. 使用EMD方法对信号进行分解。
2. 应用Hilbert变换于每个IMF分量。
3. 从而获得信号的时频表示。
以下是使用MATLAB工具箱实现HHT的一个例子:
% 假设eegData是已经导入的EEG数据
emdData = emd(eegData); % EMD分解
ht = hht(emdData); % 进行HHT变换
请注意,上述代码中的 emd
和 hht
是假定的函数,实际中需要使用专门的工具箱或自定义函数实现EMD和HHT。这些工具箱可提供强大的信号处理功能,对非线性分析非常有帮助。
在接下来的小节中,我们将详细介绍如何将这些时频分析方法应用于EEG信号中,以及如何解读和利用分析结果。
4. EEG节律分析与大脑状态监测
4.1 节律分析的理论基础和算法
4.1.1 常见的脑电节律分类与特性
脑电节律是脑电波在特定频率范围内的波动模式,它们反映了大脑活动的不同方面。在进行节律分析时,研究者通常关注的是脑电波的五个主要频率范围:δ波(delta waves)、θ波(theta waves)、α波(alpha waves)、β波(beta waves)和γ波(gamma waves)。这些节律各自有独特的特征和功能:
- δ波:频率范围为0.5-4 Hz。在成人中,δ波通常与深度睡眠、昏迷和大脑损伤相关。然而,在儿童中,δ波是正常清醒状态下的特征之一。
- θ波:频率范围为4-8 Hz。这种波通常与深睡眠和轻度麻醉状态相关。在成人中,θ波的活动增加与某些精神活动,如冥想和创造力,也有关联。
- α波:频率范围为8-13 Hz。α波是放松但清醒状态下的特征性波形。在闭眼时α波活动增加,睁开眼睛或集中注意力时减少。
- β波:频率范围为13-30 Hz。β波与集中注意力、解决问题和处理感觉输入时的大脑活动有关。它们在警觉和高度认知功能状态下最常见。
- γ波:频率范围大于30 Hz。近年来的研究发现,γ波可能与意识、记忆形成和注意调节等复杂脑功能相关。
4.1.2 节律分析的关键技术及实现方法
在EEG信号处理中,节律分析的关键在于正确识别和提取各种脑电节律波形,并使用这些波形来揭示大脑活动的特定方面。实现节律分析的关键技术包括:
- 频域分析:最常用的技术是傅里叶变换,将EEG信号从时域转换到频域,以识别不同频率成分。快速傅里叶变换(FFT)是处理EEG数据时的常用算法之一。
- 时频分析:此类方法不仅可以分析信号的频率成分,还可以提供这些频率成分随时间变化的信息。小波变换是实现时频分析的一种流行方法。
- 自动节律识别:通过应用机器学习技术,自动从EEG信号中识别特定的节律模式。支持向量机(SVM)、人工神经网络(ANN)和其他算法可以用于分类不同的脑电节律。
- 统计分析:确定节律的显著性和频率特异性,涉及各种统计测试,如频谱分析、交叉相关和互信息分析等。
以下是一个使用MATLAB进行傅里叶变换以分析EEG信号中特定频率成分的代码示例:
% 假设EEGdata是读取到的EEG信号矩阵
Fs = 256; % EEG信号采样率
T = 1/Fs; % 采样周期
L = length(EEGdata); % 信号长度
% 快速傅里叶变换
Y = fft(EEGdata);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
% 频率轴
f = Fs*(0:(L/2))/L;
% 绘制频谱
figure;
plot(f,P1)
title('Single-Sided Amplitude Spectrum of EEG Data')
xlabel('f (Hz)')
ylabel('|P1(f)|')
在上面的代码块中,我们首先定义了信号的采样率 Fs
,计算采样周期 T
和信号长度 L
。然后,我们使用FFT函数计算信号的频谱 Y
。我们计算单侧频谱 P1
,并通过绘制其图形来可视化结果。这个图形显示了EEG信号的频率成分及其幅度,可以用于进一步的分析,如识别特定频率范围内的节律波形。
4.2 大脑状态监测技术与应用
4.2.1 大脑状态监测的实时性和准确性要求
在现代医学和神经科学研究中,大脑状态监测技术必须满足实时性和准确性的严格要求。实时监测可以为临床诊断、神经反馈训练、手术监护和其他应用提供即时信息。实时监测要求监测系统能够快速处理和分析EEG数据,以便及时反馈大脑状态的变化。
准确性同样重要,因为监测结果的误差可能导致诊断错误或治疗方案的不当。准确性要求监测技术能够可靠地区分不同的脑电节律,准确识别异常波形,并能够准确预测大脑状态的变动趋势。
为了满足这些要求,大脑状态监测技术依赖于以下关键因素:
- 算法的精度:监测系统所用算法必须经过充分验证,能够准确识别和分类不同的脑电节律。
- 多模态融合:将EEG信号与其他生物医学信号(如ERP、fMRI等)结合,通过多模态数据分析提高监测的准确性。
- 硬件性能:监测设备的采样率、信号噪声比和硬件稳定性直接影响监测质量。
4.2.2 监测技术在临床与实验中的应用案例
临床应用案例:
在神经外科手术中,EEG监测用于评估大脑的功能状态并指导手术过程。例如,当进行癫痫手术时,监测可以确保病灶切除区域不会影响到大脑的正常功能区。
实验应用案例:
在认知科学实验中,EEG监测用于分析大脑活动对特定任务或刺激的响应。例如,通过分析反应时间与EEG信号的相关性,研究者可以更好地理解认知处理过程。
在这些应用中,大脑状态监测技术已经成为研究者和临床医师不可或缺的工具。随着技术的不断进步,这些技术正在变得更加精确和高效,从而在医学和科学研究中发挥着越来越重要的作用。
下面是使用MATLAB进行实时EEG数据处理的简单示例代码:
% 初始化实时数据流对象
persistent EEGStream; % 确保数据流对象在函数调用间持久存在
if isempty(EEGStream)
EEGStream = realTimeDataServer('EEGdata', 100); % 假设'EEGdata'是实时数据源
end
% 每次接收数据时的处理
for i = 1:100
[data, timestamp] = EEGStream.read(1); % 从数据流中读取数据
% 频域分析等后续处理
% ...
end
此代码创建了一个实时数据流对象,并在每次循环时从数据流中读取数据。每次读取的数据可以进行进一步的频域分析或其他信号处理操作。这样的实时处理对大脑状态监测尤为重要,因为它能够提供连续的监测和即时的反馈。
5. 事件相关电位(ERP)分析的理论与实践
事件相关电位(ERP)是脑电图(EEG)研究中不可或缺的一种电生理测量,它对理解大脑如何响应外界事件起着重要作用。在本章中,我们将深入探讨ERP的基本概念、生理基础、数据处理步骤以及如何在实践中进行分析和解释。
5.1 ERP的基本概念和生理基础
5.1.1 事件相关电位的定义和产生机制
ERP是通过平均大量相同事件的EEG记录,从背景噪声中提取出来的一系列脑电活动的波峰。这些波峰反映了大脑对特定刺激或事件的反应,通常在刺激发生后的几毫秒到几百毫秒内出现。与自发脑电活动不同,ERP提供了一种时间分辨率极高的方式来研究大脑对特定刺激的响应。
ERP的产生机制涉及多个大脑区域的协同工作。当个体接收外界刺激时,这些刺激首先被大脑的感官皮层处理。随后,相关的信息被传递到包括前额叶在内的多个脑区,进行进一步的整合和处理。通过电极记录下的ERP波形,科学家能够追踪这一处理过程的时空动态。
5.1.2 不同类型的ERP成分及其意义
在ERP分析中,研究者关注的是在特定时间窗口内出现的波峰,这些波峰被称为ERP成分。每个成分都有其特定的命名,例如,N100、P200、N200、P300等,其中的”N”和”P”代表负波和正波,而数字表示成分的平均峰值出现的时间(以毫秒计)。这些成分反映了大脑不同功能的处理过程,例如N100与早期视觉加工有关,而P300则与注意力分配、记忆更新和决策过程有关。
ERP成分的分析可以揭示大脑在特定任务中的信息处理机制,帮助研究者理解认知过程的本质。例如,P300成分的幅度通常与处理任务的难度成反比,这反映了个体对任务的认知负荷水平。
5.2 ERP数据分析的步骤和技术
5.2.1 ERP数据的预处理和平均处理
ERP数据分析的第一步是预处理,其目的是减少EEG记录中的伪迹和噪声。预处理通常包括以下步骤:
- 重参考化:将EEG信号从原始参考转换到其他参考,如平均参考或双侧乳突参考。
- 滤波:应用带通滤波器去除高频噪声和基线漂移。
- 分段:将EEG记录分割成与每个事件对应的段。
- 伪迹检测和校正:使用独立成分分析(ICA)等技术识别和去除眨眼等伪迹。
预处理之后,研究者将相同事件的多个EEG段平均,以提取ERP成分。平均处理有助于减少随机噪声,突出反映认知过程的信号。
5.2.2 统计分析和结果解释的方法
ERP分析的最后阶段涉及统计分析和结果解释。研究者关注的是ERP成分的幅度、潜伏期以及头皮分布。统计分析包括:
- 平均波形比较:比较不同条件下的ERP波形差异。
- 源定位:使用电极位置和脑电活动信息估计ERP成分产生的脑区。
- 群组分析:对不同个体或群体的数据进行统计比较。
在解释ERP数据时,研究者需要考虑ERP成分的潜在认知解释。例如,P300成分的幅度降低可能表明个体在处理任务时的认知资源减少,或者任务熟悉度增加导致的认知处理自动化。
在本章的后续部分,我们将详细探讨ERP数据分析的实践,包括代码示例、可视化方法和分析工具的使用。这将为研究者提供一个完整的框架,以进行ERP数据的采集、处理和解释。
6. 高级EEG分析技术与工具箱使用指南
6.1 大脑源定位技术的原理与应用
6.1.1 等电位映射(MNE)的原理与计算过程
等电位映射(MNE)是一种用于估计大脑皮层表面电流密度的算法,它利用EEG信号在头部的电位分布来反推源位置。MNE计算依赖于电磁逆问题的求解,即给定头部模型和EEG或MEG测量数据,逆推产生这些测量值的脑内电流源。
# 示例:使用MNE-Python库进行源定位
import mne
from mne.minimum_norm import make_inverse_operator, apply_inverse
# 加载预先配置的头部模型和EEG数据
data_path = 'path/to/your/subject/data'
raw = mne.io.read_raw_fif(data_path + '/your_eeg_file.fif')
info = raw.info
# 计算噪声协方差
noise_cov = mne.compute_raw_covariance(raw)
# 创建源定位模型
fwd = mne.read_forward_solution(data_path + '/your_forward_solution.fif')
inverse_operator = make_inverse_operator(info, fwd, noise_cov)
# 计算动态图
stc = apply_inverse(raw, inverse_operator, nave=1, method="dSPM")
在MNE-Python中,用户首先需要加载EEG数据和头部模型,然后计算噪声协方差矩阵,接着创建一个源定位模型,最后应用逆算算子来计算动态图。
6.1.2 动态统计参数映射(dSPM)等技术的应用
动态统计参数映射(dSPM)是一种源定位技术,用于估计大脑皮层表面电流密度的标准差,它提供了比MNE更明确的空间分辨率。dSPM通过对每个源位置的MNE值进行归一化,从而降低了源空间的平滑效应。
# 应用dSPM进行源定位
dSPM_solution = apply_inverse(raw, inverse_operator, nave=1, method="dSPM")
dSPM_solution.save('path/to/save/dSPM_solution')
在使用dSPM方法时,通过调用 apply_inverse
函数并指定 method
参数为 "dSPM"
,可以得到一个更精细化的源定位结果。
6.2 EEG特征提取与数据分类方法
6.2.1 特征提取的关键技术和算法
EEG特征提取涉及从原始EEG数据中提取有助于分类或预测任务的统计量。常见的特征包括功率谱密度、波形特征、时频域特征等。
from scipy.signal import welch
import numpy as np
# 假设data是预处理后的EEG时间序列数据
frequencies, psd = welch(data, fs=256, nperseg=1024)
# 特征提取示例:提取特定频带的能量
theta_band = (4, 8) # 定义theta波频带
theta_energy = np.trapz(psd[(frequencies >= theta_band[0]) & (frequencies <= theta_band[1])])
# 其他特征提取方法可以是提取波形峰值、时域统计特性等
通过使用傅里叶变换(如 welch
函数)来计算频谱,随后选择感兴趣的频带并积分频谱,可以得到特定频带的能量特征。
6.2.2 支持向量机(SVM)、随机森林等分类方法
分类方法将特征提取的结果应用于机器学习模型中,以区分不同的大脑状态或认知过程。SVM和随机森林是EEG数据分析中常用的两种分类方法。
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
# 假设features为提取的特征数据,labels为目标标签
svm_classifier = SVC(kernel='linear')
svm_classifier.fit(features, labels)
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(features, labels)
# 使用训练好的模型进行预测
svm_predictions = svm_classifier.predict(test_features)
random_forest_predictions = random_forest.predict(test_features)
在这段代码中,我们首先导入了SVM和随机森林分类器,接着使用 fit
方法训练模型,并使用 predict
方法对测试集进行预测。
6.3 EEG数据可视化分析工具
6.3.1 数据可视化的目标和方法
EEG数据可视化旨在将复杂的时间序列信号转化为直观的图像,使得研究者能够更容易地理解和解释EEG信号。可视化可以包括时域波形图、频谱图、头皮映射等。
import matplotlib.pyplot as plt
# 假设raw_data是EEG时域数据
plt.figure(figsize=(12, 6))
plt.plot(raw_data)
plt.xlabel('Time (ms)')
plt.ylabel('Amplitude')
plt.title('EEG Time Domain Waveform')
plt.show()
# 频谱可视化示例
plt.figure(figsize=(12, 6))
plt.psd(raw_data, NFFT=1024, Fs=256)
plt.xlabel('Frequency (Hz)')
plt.ylabel('Power/Frequency')
plt.title('EEG Power Spectral Density')
plt.show()
上述代码展示了如何使用Matplotlib库绘制EEG时间域波形和频谱图。
6.3.2 常见可视化工具的使用和实例
许多开源库如MNE-Python和EEGLAB提供了强大的可视化工具,它们支持头皮映射、事件相关电位图等高级可视化。
# 使用MNE-Python库绘制头皮映射图
evoked = mne.EvokedArray(evoked_data, info)
evoked.plot_topomap(times=[0.1], size=3, colorbar=True)
这里 evoked_data
应该是从事件触发的EEG信号中提取的ERP数据。 plot_topomap
函数将绘制ERP在头皮表面的映射图,帮助用户直观地看到信号的空间分布。
6.4 工具箱使用指南与初学者建议
6.4.1 工具箱的安装、配置与基本使用方法
在进行EEG分析之前,安装和配置工具箱是非常关键的一步。以MNE-Python为例,它依赖于Python环境,可以通过pip进行安装。
pip install mne
在Python中,您可以使用 import mne
来加载MNE库。接下来,您可以使用MNE提供的各种功能来加载数据、处理信号和可视化数据。
import mne
mne.set_log_level('WARNING') # 设置日志等级以减少输出
6.4.2 针对初学者的学习路径和建议
对于初学者来说,从理解EEG信号的基础知识开始,逐步学习数据预处理、分析到最后的可视化。建议初学者遵循以下几个步骤:
- 学习EEG信号的基础知识,包括电极放置、常见的EEG波形和其认知意义。
- 熟悉至少一种编程语言,推荐Python,因为它在EEG数据处理领域有着广泛的应用。
- 学习使用至少一种EEG分析工具箱,如MNE-Python或EEGLAB。
- 跟踪和实践现有的研究案例,了解实际应用中的分析流程。
- 参与在线社区和论坛,如GitHub、Stack Overflow,以获取帮助和反馈。
简介:本工具箱是专为脑电(EEG)信号处理和分析设计的MATLAB工具集第二部分。它为用户提供了一系列用于脑电信号预处理、特征提取、分类以及其他高级分析的函数和脚本。EEG信号处理技术广泛应用于神经科学、临床诊断等。工具箱支持数据导入与预处理、时频分析、节律分析、事件相关电位(ERP)研究、源定位、特征提取、分类与聚类以及结果可视化等功能。用户需结合工具箱的第一部分,按文档指导进行使用,以便充分发挥工具箱的功能。