[Graph]网络流——Dinic

网络流.Dinic

定义:

源点:只有流出去的点
汇点:只有流进来的点
流量:一条边上流过的流量
容量:一条边上可供流过的最大流量
残量:一条边上的容量-流量

性质:

对于任何一条流,总有流量<=容量

pEk[p][u]==qEk[u][q](其中k[i][j]表示i到j的流量)

对于任何一条有向边有 k[u][v]=-k[v][u](k为流量)


 

网络最大流算法

基本思路:

找到一条从源点到汇点的路径,使得路径上任意一条边的残量>0,这条路径便称为增广路

找到这条路径上最小的F[u][v](我们设F[u][v]表示u->v这条边上的残量即剩余流量),下面记为flow
将这条路径上的每一条有向边u->v的残量减去flow,同时对于起反向边v->u的残量加上flow
重复上述过程,直到找不出增广路,此时我们就找到了最大流

反向边提供了反悔的机会,即万一这条路不是最优解,在下一次BFS时可以搜到这条反向边,返回原点。

Dinic的层次图为每个点提供了一个深度,加快了找到最大流的速度。

int bfs()
        {
            //cout<<"Bfs.begin:"<<endl;
            queue<int> Q;
            while (!Q.empty())
                Q.pop();
            memset(Depth,0,sizeof(Depth));
            Depth[s]=1;
            Q.push(s);
            do
            {
                int u=Q.front();
                //cout<<u<<endl;
                Q.pop();
                for (int i=Head[u];i!=-1;i=Next[i])
                {
                    if ((W[i]>0)&&(Depth[V[i]]==0))
                    {
                        Depth[V[i]]=Depth[u]+1;
                        Q.push(V[i]);
                    }
                }
            }
            while (!Q.empty());
            //cout<<"Bfs.end"<<endl;
            if (Depth[t]>0)
                return 1;
            return 0;
        }
BFS

 

int dfs(int u,int dist)
        {
            //cout<<"Dfs:"<<u<<' '<<dist<<endl;
            if (u==t)
                return dist;
            for (int i=Head[u];i!=-1;i=Next[i])
            {
                if ((Depth[V[i]]==Depth[u]+1)&&(W[i]!=0))
                {
                    int di=dfs(V[i],min(dist,W[i]));
                    if (di>0)
                    {
                        W[i]-=di;
                        W[i^1]+=di;
                        return di;
                    }
                }
            }
            return 0;
        }
DFS
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
#define maxM 200010
#define maxN 100010
#define inf 2e9
    int s,t;
    int cnt;
    int Head[maxM];
    int Next[maxM];
    int V[maxM];
    int W[maxM];
    int Depth[maxN];
    int n;
    void init(int nn,int ss,int tt)//初始化
        {
            n=nn;
            s=ss;
            t=tt;
            cnt=-1;
            memset(Head,-1,sizeof(Head));
            memset(Next,-1,sizeof(Next));
            return;
        }
    void _Add(int u,int v,int w)
        {
            cnt++;
            Next[cnt]=Head[u];
            V[cnt]=v;
            W[cnt]=w;
            Head[u]=cnt;
        }
    void Add_Edge(int u,int v,int w)//加边,同时加正向和反向的
        {
            _Add(u,v,w);
            _Add(v,u,0);
        }
    int dfs(int u,int dist)
        {
            //cout<<"Dfs:"<<u<<' '<<dist<<endl;
            if (u==t)
                return dist;
            for (int i=Head[u];i!=-1;i=Next[i])
            {
                if ((Depth[V[i]]==Depth[u]+1)&&(W[i]!=0))
                {
                    int di=dfs(V[i],min(dist,W[i]));
                    if (di>0)
                    {
                        W[i]-=di;
                        W[i^1]+=di;
                        return di;
                    }
                }
            }
            return 0;
        }
    int bfs()
        {
            //cout<<"Bfs.begin:"<<endl;
            queue<int> Q;
            while (!Q.empty())
                Q.pop();
            memset(Depth,0,sizeof(Depth));
            Depth[s]=1;
            Q.push(s);
            do
            {
                int u=Q.front();
                //cout<<u<<endl;
                Q.pop();
                for (int i=Head[u];i!=-1;i=Next[i])
                {
                    if ((W[i]>0)&&(Depth[V[i]]==0))
                    {
                        Depth[V[i]]=Depth[u]+1;
                        Q.push(V[i]);
                    }
                }
            }
            while (!Q.empty());
            //cout<<"Bfs.end"<<endl;
            if (Depth[t]>0)
                return 1;
            return 0;
        }
    int Dinic()
        {
            int Ans=0;
            while (bfs())
            {
                while (int d=dfs(s,inf))
                    Ans+=d;
            }
            return Ans;
        }
        int main()
        {
            int num,i,bian,a,b,c,ss,tt;
            scanf("%d%d%d%d",&num,&bian,&ss,&tt);
            init(num,ss,tt);
            for(i=1;i<=bian;i++){
                scanf("%d%d%d",&a,&b,&c);
                Add_Edge(a,b,c);
            }
            
            printf("%d",Dinic());
        }
总代码 Luogu 3376

 

转载于:https://www.cnblogs.com/Fish-/p/8253796.html

内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值