【阅读笔记】:End-to-end Structure-Aware Convolutional Networks for Knowledge Base Completion

本文介绍了SACN模型,一种结合WGCN和Conv-TransE的结构感知卷积网络,用于知识库补全任务。SACN通过WGCN建模实体和关系,然后在Conv-TransE中处理,提高三元组补全的准确性。在FB15k-237和WN18RR数据集上,SACN展现出优越性能,成为当前SOTA模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      为解决知识图谱(KG)中三元组不完整问题,本文结合加权图卷积神经网络(WGCN)和Conv-TransE两个模块,提出了SACN(Structure-Aware Convolutional Networks)模型。SACN通过WGCN来建模KG中的实体和关系,提取实体特征,然后输入至ConvE中使实体满足KG三元组约束,得到实体的embedding表示。通过实验证明,在FB15k-237和WN18RR数据集上超越了之前最佳模型效果的10%,是当前的SOTA模型。

      发表于AAAI 2019,作者信息如下:


 

  • 引言    

      首先简要介绍知识库(Knowledge Base,KB)。知识库中的知识有很多种不同的形式,例如本体知识、关联性知识、规则库、案例知识等。相比于知识库的概念,知识图谱(Knowledge Graph,KG)更加侧重关联性知识的构建。定义KG的主要方法是采用(s, r, o)三元组的形式,举例来说,北京是中国的首都,那么这句话就可以用三元组表示为:(s = Beijing, r = IsCapitalOf, o = China )。其中s称为头实体,r称为关系,o为尾实体。本文的知识库补全任务指的就是知识图谱中三元组的补全。

      那么,在有了三元组的定义之后,本文的任务就可以描述为:给定KG,学习实体和关系的嵌入表示,完成三元组补全任务(s, r, o),即给定头实体和关系,求最可能的尾实体。

  • 方法

      模型的整体框架为WGCN模块提取实体embedding表示,再将实体embedding表示作为Conv-TransE模块的输入,得到满足三元组约束的Loss从而训练整个网络。整体框架如Figure 1所示。

      下面,本文将按前向传播顺序介绍WGCN和Conv-TransE模块。

      1. WGCN

      顾名思义,WGCN的全称是Weight

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值