英伟达的主流深度学习框架是CUDA,通过 CUDA 和 cuDNN 调用英伟达GPU的计算能力,适用于训练和推理,现在用CUDA和C++写代码做训练和推理,代码要迁移到华为原生开发框架,以下是相关资料,需要做哪些工作,具体步骤是什么?
1. 华为原生开发框架
-
CANN(Compute Architecture for Neural Networks)
- 华为专为升腾设计的AI计算架构,提供底层算子库、通信库和运行时支持。
- 包含AscendCL(类似CUDA的编程接口)、图引擎等,支持自定义算子开发。
- 适用场景:底层优化、高性能计算需求。
-
MindSpore
- 华为开源的全场景AI框架,原生支持升腾芯片,提供自动微分、动态图/静态图混合编程等特性。
将基于CUDA/C++的深度学习代码迁移到华为昇腾平台,需要结合 CANN 和 MindSpore 进行系统性重构。以下是具体迁移步骤和关键工作:
迁移路径总览
具体步骤及工作
1. 环境与架构分析
- 关键任务:
- 确认现有代码结构:梳理CUDA Kernel、内存管理、cuDNN调用、通信库(如NCCL)的分布。
- 识别华为对等组件:
CUDA
→ AscendCL(设备管理/内存/流)cuDNN
→ CANN基础算子库(GEMM/卷积等)NCCL
→ HCCL(昇腾分布式通信)
- 输出:组件映射表与依赖关系图。
2. 硬件层迁移:CUDA → AscendCL
- 工作重点:
- 设备管理:
// CUDA cudaSetDevice(0); // AscendCL aclrtSetDevice(0);
- 内存操作:
// CUDA cudaMalloc(&dev_ptr, size); cudaMemcpy(dev_ptr, host_ptr, size, cudaMemcpyHostToDevice); // AscendCL aclrtMalloc(&dev_ptr, size, ACL_MEM_MALLOC_HUGE_FIRST); aclrtMemcpy(dev_ptr, size, host_ptr, size, ACL_MEMCPY_HOST_TO_DEVICE);
- 流与事件:
// CUDA cudaStream_t stream; cudaStreamCreate(&stream); // AscendCL aclrtStream stream; aclrtCreateStream(&stream);
- 设备管理:
- 注意:需重写所有显存/流相关的底层操作。
3. 计算图与算子迁移
-
选项1:使用MindSpore重构(推荐)
- 适用场景:动态图/静态图训练、推理部署。
- 步骤:
- 模型重建:用MindSpore API重写模型结构(如
nn.Cell
)。 - 自定义算子:
- 用TBE(Tensor Boost Engine) 开发昇腾专属算子(Python/DSL)。
- 封装C++算子(通过
Custom
算子接口调用)。
- 数据流适配:将数据加载Pipeline改为
MindData
API。
# MindSpore 模型示例 class Net(ms.nn.Cell): def __init__(self): super().__init__() self.conv = ms.nn.Conv2d(3, 64, kernel_size=3) def construct(self, x): return self.conv(x)
- 模型重建:用MindSpore API重写模型结构(如
-
选项2:纯CANN开发(高性能场景)
- 适用场景:对延迟敏感的推理任务。
- 步骤:
- 算子开发:用AscendCL或TBE重写CUDA Kernel。
- 图引擎构建:使用GE(Graph Engine) 组网:
- 定义
aclmdlDesc
模型描述 - 通过
aclmdlAddOp
添加算子节点
- 定义
- 离线模型生成:导出
OM
模型文件供部署。
4. 通信库迁移:NCCL → HCCL
- 修改点:
// NCCL ncclAllReduce(..., ncclComm, stream); // HCCL hcclAllReduce(..., hcclComm, stream, HcclReduceOp::SUM);
- 注意:需同步修改分布式初始化逻辑(
hcclCommInitRoot
)。
5. 性能调优
- 工具链使用:
- Ascend Profiler:分析算子耗时/内存瓶颈。
- AOE(Ascend Optimization Engine):自动优化算子性能。
- 关键优化点:
- 启用Tensor加速(FP16/INT8量化)。
- 调整流水线并行(通过
aclrtSetOpWaitPolicy
)。 - 使用连续内存访问(避免HBM带宽瓶颈)。
6. 部署与测试
- 环境配置:
# 安装CANN Toolkit ./Ascend-cann-toolkit_6.0.RC1.run --install # 设置环境变量 source /usr/local/Ascend/ascend-toolkit/set_env.sh
- 测试流程:
- 精度验证:对比CUDA与昇腾输出误差(允许<1e-5)。
- 性能基准:测试吞吐量/延迟,使用
msprof
生成报告。 - 异常检测:监控
aclError
错误码(如ACL_ERROR_INVALID_PARAM
)。
迁移难点与应对策略
难点 | 解决方案 |
---|---|
CUDA Kernel重写复杂 | 优先使用TBE自动生成算子 |
动态图控制流迁移 | 用MindSpore装饰器@ms.jit 转静态图 |
第三方库依赖(如OpenCV) | 编译昇腾版库或调用Host侧处理 |
参考资源
迁移建议:
- 优先尝试MindSpore:对已有PyTorch/TF模型迁移效率更高(支持图融合/自动并行)。
- 关键C++代码保留:通过
MindSpore::Custom
算子封装已有C++逻辑,逐步替换CUDA部分。- 利用迁移工具:使用华为提供的Model Adapter自动转换主流框架模型。
完成迁移后,典型昇腾训练代码将呈现为 MindSpore前端+CANN底层加速 的混合架构,兼顾开发效率与硬件性能。