证明:lp(p>1)l^p(p>1)lp(p>1)中点列xn={
ξ1(n),ξ2(n),…},n=1,2,…x_{n}=\{\xi_{1}^{(n)}, \xi_{2}^{(n)}, \ldots\}, n=1, 2, \ldotsxn={
ξ1(n),ξ2(n),…},n=1,2,…,弱收敛于 x={
ξ1,ξ2,…}∈lpx=\{\xi_1, \xi_2, \ldots\} \in l^px={
ξ1,ξ2,…}∈lp的充要条件为 supn∥xn∥<∞\sup_{n}\|x_{n}\|<\inftynsup∥xn∥<∞,且对每个kkk,limn→∞ξk(n)=ξk\lim_{n \to \infty} \xi_{k}^{(n)}=\xi_{k}n→∞limξk(n)=ξk。
证:充分性:设∥xn∥⩽M,n=1,2,⋯\left\|x_{n}\right\| \leqslant M, n=1, 2, \cdots∥xn∥⩽M,n=1,2,⋯,对任一f∈lqf \in l^{q}f∈lq,设f=(η1,η2,…)f=(\eta_1, \eta_2, \ldots)f=(η1,η2,…)。对∀ε>0\forall \varepsilon > 0∀ε>0,确定k0k_{0}k0,使
∑k=k0+1∞∣ηk∣q<(ε2(M+∥×∥))q\sum_{k=k_{0}+1}^{\infty}\mid \eta_k\mid ^q <(\frac{\varepsilon}{2(M+\|\times\|)})^qk=k0+1∑∞∣ηk∣q<(2(M+∥×∥)ε)q
再确定NNN,使n>Nn>Nn>N时,有
∑k=1k0∣ξk(n)−ξk∣∣ηk∣<ε2\sum_{k=1}^{k_{0}}\mid\xi_{k}^{(n)}-\xi_{k}\mid\mid\eta_k\mid < \frac{\varepsilon}{2}k=1∑k0