证明lp(p>1)空间中点列弱收敛的充要条件是点列有界且各分量分别收敛

证明:lp(p>1)l^p(p>1)lp(p>1)中点列xn={ ξ1(n),ξ2(n),…},n=1,2,…x_{n}=\{\xi_{1}^{(n)}, \xi_{2}^{(n)}, \ldots\}, n=1, 2, \ldotsxn={ ξ1(n),ξ2(n),},n=1,2,,弱收敛于 x={ ξ1,ξ2,…}∈lpx=\{\xi_1, \xi_2, \ldots\} \in l^px={ ξ1,ξ2,}lp的充要条件为 sup⁡n∥xn∥<∞\sup_{n}\|x_{n}\|<\inftynsupxn<,且对每个kkklim⁡n→∞ξk(n)=ξk\lim_{n \to \infty} \xi_{k}^{(n)}=\xi_{k}nlimξk(n)=ξk
证:充分性:设∥xn∥⩽M,n=1,2,⋯\left\|x_{n}\right\| \leqslant M, n=1, 2, \cdotsxnM,n=1,2,,对任一f∈lqf \in l^{q}flq,设f=(η1,η2,…)f=(\eta_1, \eta_2, \ldots)f=(η1,η2,)。对∀ε>0\forall \varepsilon > 0ε>0,确定k0k_{0}k0,使
∑k=k0+1∞∣ηk∣q<(ε2(M+∥×∥))q\sum_{k=k_{0}+1}^{\infty}\mid \eta_k\mid ^q <(\frac{\varepsilon}{2(M+\|\times\|)})^qk=k0+1ηkq<(2(M+×)ε)q
再确定NNN,使n>Nn>Nn>N时,有
∑k=1k0∣ξk(n)−ξk∣∣ηk∣<ε2\sum_{k=1}^{k_{0}}\mid\xi_{k}^{(n)}-\xi_{k}\mid\mid\eta_k\mid < \frac{\varepsilon}{2}k=1k0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值