geo数据差异分析_答疑呀嘿丨如何对GEO数据库的数据进行差异表达基因分析?

本文解答了如何对GEO数据库数据进行差异表达基因分析,包括使用GCBI平台、GEO2R在线工具、Expression Console软件以及R语言包如limma。还涉及基因组测序类型、不同物种数据的分析策略、GCBI在线实验室支持的数据类型以及qPCR实验中遇到的问题和解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

又是一周答疑时间到!

感谢本周答疑老师-上海其明的杨老师,侯老师和张老师!

本周又有一些小伙伴提出了他们的问题,有一些真的对大家比较有参考意义,注意认真阅读哦~

Q1-生信分析

问:想对GEO数据库的数据进行差异表达基因分析DEG分析,应该怎么操作呢

答:从GEO数据库得到的芯片数据进行DEG分析可以考虑以下几种思路:推荐使用其明的GCBI平台,只需获取芯片的原始CEL文件即可高效快捷地使用该平台进行芯片的分析。

可以使用GEO 官方的GEO2R 在线交互分析平台,比较简单快捷。

如果是affymatrix 芯片,也可以使用其自带的Expression Console 软件通过导入原始CEL文件进行DEG分析。

也可以使用R语言的一些包工具如(affy、oligo、limma)来通过读入原始CEL文件进行更加个性化的分析。

其中,前3种适合无基础用户,最后一种适合有一些芯片分析基础的用户。

Q2-基因组测序

问:基因组测序和de novo测序有什么区别啊?

答:基因组测序分为de novo测序和重测序。

de novo 测序即从头测序,不需要任何参考基因组信息即可对某个物种的基因组进行测序,利用生物信息学分析方法进行拼接、组装,获得该物种的基因组序列图谱,从而推进该物种的后续研究。

基因组重测序主要用于辅助研究者发现单核苷酸多态性位点(SNPs)、拷贝数变异(CNV)、插入/缺失(Indel)等变异类型,以较低的价格将单个参考基因组信息扩增为生物群体的遗传特征。全基因组重测序在人类疾病和动植物育种研究中广泛应用。

Q3-分析策略

问:大鼠和小鼠的蛋白组学数据,不同时间做出来的,一般这样的数据可以拿来交集一起分析吗?

答:不同物种不适合取交集,因为类似的蛋白在不同的物种中存在的名称可能是不同的,单纯的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值