30系 显卡显存被占用又找不到进程的解决办法

本文讲述了作者在使用PyTorch训练模型时遇到显存不足的问题,通过排查发现是由于默认设备选择错误导致。解决方法是在代码中设置CUDA_VISIBLE_DEVICES环境变量。此外,还提到调整batch_size和图片大小能缓解内存问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近使用pytorch进行模型训练,调用显卡时出现以下错误:

RuntimeError: CUDA out of memory.

傻了,新买的电脑3060,6G显存。啥也没干就不够用了?
于是开始上网找解决办法,很多大佬说,是显存被其他进程占用又没关闭导致的。建议使用nvidia-smi指令在cmd下查找进程,关闭即可。
乖乖听话:
结果显示
?没有进程,那到底是什么占用了我的现存!
!当然,如果你可以通过这种方式查找到占用你显存的进程直接使用kill+进程id即可清除进程。
如果你和我一样没找到,接着看下去。。。
又找了一波资料才确定最终问题,的确我并没有正在运行的进程,因为我把自己的设备号默认为了0!!!
通过设备管理器查看GPU号
哎!初学者常犯错误,赶快在开头import os 后加一句:

os.environ['CUDA_VISIBLE_DEVICES'] = '1'

成功运行!
希望大家不要像我一样傻 ~
ps:应对内存不足的情况也可通过减少batch_size及输入图片大小进行缓解,归根结底一张好的显卡或服务器可以解决一切问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值