17、人工智能服务的实践与应用:从最佳实践到实际案例

人工智能服务的实践与应用:从最佳实践到实际案例

1. 机器学习项目的最佳实践

1.1 模型分析的局限性与适当响应

在与客服中心代理通话时,分析可能会准确检测到客户是否心烦意乱。然而,如果客户是因为要取消最近去世的家庭成员的订阅而致电,那么客服代理无法“解决”这种情况,提供折扣或其他挽留激励措施是不合适的。这提醒我们在利用模型分析结果时,要结合实际情况做出恰当的决策。

1.2 透明度与信任

在机器学习过程中,理解和解释模型以及使用模型做出的决策至关重要。这需要向使用者和受影响者分享模型的准确性、置信水平,解释其工作原理以及擅长和不擅长预测的内容。具体操作包括向业务团队和其他利益相关者展示模型的指标(如准确性)、置信水平在实际中的含义以及模型所依赖的特征,为客户记录这些细节,或者在审计时进行跟踪。

1.3 实验、更新与迭代

模型的指标有助于了解其解决问题和回答问题的能力。尽管预建的云AI服务可能立即带来良好结果,但很多时候需要尝试不同的模型、算法、超参数选择,或者在定制模型时使用不同的训练数据集,以获得更好的效果。良好的数据文化应包含以下实践:
- 明确界定假设,但不固执己见。
- 愿意从实验(成功和失败)中学习。
- 借鉴他人的成功经验。
- 与同行分享学习成果。
- 将成功的实验推广到生产环境。
- 认识到失败是实验的有效结果。
- 迅速转向下一个假设。
- 完善下一次实验。

同时,要跟踪模型的性能,包括创建时和随时间的变化,观察其与销售、收入、客户满意度等指标的相关性。随着情况变化,可能需要更新、停用或替换模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值