1. SVM是什么
SVM分类的原理就是找到一个超平面(假设数据是线性可分的),这个超平面满足两个要求:
1. 所有数据点被完美地分成两类
2. 所有数据点离超平面距离越远越好
2. 若干定义
为了量化以上要求,我们先定义一些概念:
feature:x
class:
function margin: γ^=y(wTx+b)
geometrical margin: γ~=γ^∥w∥
3. 如何满足两个条件
(1) 要满足条件1,很简单,只需要满足yi(wT