SVM目标函数的由来

SVM寻找一个能最大化数据点与超平面间隔的超平面进行分类。通过定义特征、类别、几何间隔等概念,SVM目标函数旨在确保所有数据点正确分类且间隔最大化。当超平面位于支持向量之间时,间隔达到最大,从而形成SVM的基本优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. SVM是什么
SVM分类的原理就是找到一个超平面(假设数据是线性可分的),这个超平面满足两个要求:
1. 所有数据点被完美地分成两类
2. 所有数据点离超平面距离越远越好

2. 若干定义
为了量化以上要求,我们先定义一些概念:
feature:x
class: y=+1 or 1
function margin: γ^=y(wTx+b)
geometrical margin: γ~=γ^w

3. 如何满足两个条件
(1) 要满足条件1,很简单,只需要满足yi(wT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值