本人项目地址大全:Victor94-king/NLP__ManVictor: CSDN of ManVictor
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
❝在大型语言模型(LLM)的发展过程中,"function calling"成为提升模型实际应用能力的重要研究方向之一。随着AI技术的进步,许多应用场景要求模型能够自动调用不同的API来执行任务。这不仅包括正确选择合适的API,还需要生成符合规范的函数调用,从而实现复杂的任务自动化。因此,理解如何生成高质量的function calling微调数据成为了AI开发者和研究者们的关键任务。
本文将深入探讨如何为function calling任务生成高质量的微调数据,并通过具体例子和实战步骤带领读者逐步理解这一技术核心。
大型语言模型在函数调用中的关键能力
在function calling微调过程中,模型需要掌握以下关键能力:
- 准确的API选择 :识别并选择最合适的API执行用户的查询。这要求模型具备强大的理解能力,能够分析用户的自然语言意图,并从多个可选的API中匹配到最相关的一个或多个。
- 精确的参数映射 :将用户的自然语言输入映射到所选API的参数中。这一过程要求模型能够处理复杂的嵌套结构、依赖关系等复杂的API调用场景。