阿里超算中心AI资源调度实战:架构师视角下的电商AI应用支持策略
副标题:从资源池化到智能调度,解密超大规模AI算力的高效利用
摘要/引言
问题陈述
电商场景下的AI应用正经历爆发式增长——从实时推荐、智能搜索到图像识别、智能客服,AI模型已成为驱动业务增长的核心引擎。然而,这类应用的资源需求具有显著的“三高”特征:高波动(如双11大促期间推理请求量激增10倍)、高异构(CPU/GPU/TPU等多类型算力并存)、高复杂(训练/推理混合负载、多模型版本迭代)。传统的静态资源分配或通用调度系统(如Kubernetes默认调度器)难以应对:资源利用率长期低于50%、大促峰值响应延迟超阈值、GPU等稀缺资源争抢严重,直接影响用户体验与业务成本。
核心方案
阿里超算中心通过构建**“智能感知-动态调度-弹性伸缩”三位一体的AI资源调度架构**,解决电商AI应用的算力支撑难题。该架构以“资源池化”为基础,融合“预测式调度”与“反应式调度”,通过四大核心技术实现突破:
- 异构资源统一池化:将CPU、GPU、内存、网络等资源抽象为标准化资源池,打破物理机壁垒;
- <