1. 背景介绍
随着深度学习在各个领域的广泛应用,模型的鲁棒性问题日益凸显。深度学习模型容易受到对抗样本的攻击,即在输入数据中添加微小的扰动,导致模型输出错误的结果。对抗样本的存在对模型的安全性、可靠性构成了严重威胁,因此提升模型鲁棒性成为深度学习领域一个重要的研究方向。
1.1 对抗样本的威胁
对抗样本的威胁主要体现在以下几个方面:
- 安全性风险: 对抗样本可以被恶意攻击者利用,攻击人脸识别系统、自动驾驶系统等,造成严重的安全隐患。
- 可靠性问题: 模型在面对对抗样本时,输出结果不可靠,影响模型的实际应用。
- 泛化能力下降: 模型过度拟合训练数据,对对抗样本的泛化能力下降。
1.2 对抗训练的意义
对抗训练是一种提升模型鲁棒性的有效方法,通过在训练过程中加入对抗样本,使模型学习到对抗样本的特征,从而提高模型对对抗样本的识别能力。对抗训练可以有效地提高模型的鲁棒性,降低模型受到对抗样本攻击的风险,提高模型的可靠性和泛化能力。
2. 核心概念与联系
2.1 对抗样本
对抗样本是指在原始输入数据中添加微小的扰动,导致模型输出错误结果的样本。这些扰动通常是人眼无法察觉的,但足以欺骗模型。
2.2 对抗训练
对抗训练是一种通过在训练过程中加入对抗样本,