1. 背景介绍
1.1 强化学习概述
强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它关注智能体(Agent)如何通过与环境(Environment)的交互来学习并优化其行为策略,从而获得最大的累积奖励。与监督学习和无监督学习不同,强化学习没有提供明确的输入-输出样本对,而是通过试错和奖惩机制来学习。
1.2 深度强化学习的兴起
传统的强化学习算法在处理高维观测数据和连续动作空间时存在一些局限性。深度神经网络(Deep Neural Networks, DNNs)的出现为强化学习提供了一种强大的函数逼近能力,使得智能体能够直接从原始高维输入(如图像、视频等)中学习策略,从而推动了深度强化学习(Deep Reinforcement Learning, DRL)的发展。
1.3 DQN算法的里程碑意义
2013年,DeepMind公司提出了深度Q网络(Deep Q-Network, DQN),将深度学习与Q-Learning相结合,成为深度强化学习领域的一个里程碑。DQN算法能够直接从原始像素输入中学习控制策略,并在多个经典的Atari游戏中表现出超越人类的水平,引发了学术界和工业界对深度强化学习的广泛关注。
2. 核心概念与联系
2.1 马尔可夫决策过程(MDP)
马尔可夫决策过程(Markov Decision Process, MDP)是强化学习的数学基础。MD