1. 背景介绍
1.1 人工智能的崛起
随着计算机技术的飞速发展,人工智能(Artificial Intelligence, AI)已经成为了当今科技领域的热门话题。从自动驾驶汽车到智能家居,人工智能正逐渐渗透到我们的日常生活中。在这个过程中,自然语言处理(Natural Language Processing, NLP)作为人工智能的一个重要分支,也得到了广泛的关注。
1.2 自然语言处理的挑战
自然语言处理的目标是让计算机能够理解和生成人类语言。然而,由于人类语言的复杂性和多样性,这一目标一直难以实现。近年来,随着深度学习技术的发展,自然语言处理领域取得了显著的进展。特别是大型预训练语言模型(Large-scale Pre-trained Language Models, LPLMs)的出现,为自然语言处理带来了革命性的变化。
2. 核心概念与联系
2.1 语言模型
语言模型(Language Model, LM)是自然语言处理的基础。它的目标是学习一个概率分布,用于表示一个句子或一段文本的可能性。通常,语言模型通过计算一个句子中每个词出现的概率来实现这一目标。
2.2 预训练语言模型
预训练语言模型(Pre-trained Language Model, PLM)是一种利用大量无标注文本数据进行预训练的语言模型。通过预训练,模型可以学习到丰富的语言知识,从而在下游任务中取得更好的性能。