
AI
文章平均质量分 94
Elastic 中国社区官方博客
Elastic 首席布道师,Elastic 认证工程师,认证分析师,认证可观测性工程师,阿里云最有价值专家
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
什么是 Model Context Protocol ( MCP )?
MCP(ModelContextProtocol)是为解决LLM与外部系统集成问题而设计的标准化协议。它采用客户端-服务器架构,通过统一接口连接AI应用与数据源/工具,包含三大核心功能:资源(数据访问)、工具(执行操作)和提示(交互模板)。MCP解决了AI应用与外部系统直接集成导致的M×N扩展问题,将维护责任转移至服务提供方,显著降低开发复杂度。该协议支持JSON-RPC通信,强调安全控制,并兼容现有AI框架(如LangChain),使开发者能专注于核心逻辑而非底层集成。官方提供多语言SDK和规范文档,支持原创 2025-08-06 08:00:00 · 991 阅读 · 0 评论 -
Elastic 线下 Meetup 将于 2025 年 9 月 6 号下午在成都举行
2025年9月6日,ElasticMeetup成都站将在腾讯成都大厦举办。活动由Elastic、腾讯和新智锦绣联合主办,聚焦AI驱动的搜索技术发展。主要内容包括:Elastic社区布道师刘晓国讲解向量搜索和RAG技术;腾讯云专家张小伟介绍ESServerless日志分析方案;Elastic架构师李捷分享AgenticRAG构建经验。活动包含主题演讲、茶歇交流及抽奖环节,需提前实名报名。原创 2025-07-31 11:02:20 · 1443 阅读 · 0 评论 -
使用 Elasticsearch 和 AI 构建智能重复项检测
摘要:本文探讨了如何利用Elasticsearch结合AI技术构建智能重复检测系统,解决金融和保险领域的申请重复问题。系统通过Elasticsearch的音近搜索功能处理姓名拼写差异,使用AI模型生成地址变体,并采用本地LLM进行最终去重判断。文章详细介绍了从环境搭建、索引配置到实际应用的完整流程,包括处理姓名变异、地址差异等复杂场景。该方案不仅能有效识别"Katherine Johnson"与"Kate Johnson"等变体名称的重复申请,还可应用于政府服务、医疗原创 2025-07-31 10:57:24 · 1065 阅读 · 0 评论 -
Elasticsearch 现在默认启用 BBQ,并通过 ACORN 实现过滤向量搜索
Elasticsearch 9.1推出两项向量搜索重大改进:新算法ACORN显著提升过滤向量搜索速度(典型场景5倍加速);BBQ量化方法在降低32倍内存占用的同时,基准测试显示其排序质量优于传统float32搜索。这些创新让开发者能在不牺牲质量的前提下,构建更快速、更低成本的AI搜索应用。用户升级至新版本即可自动获得这些优化功能。原创 2025-07-30 09:12:28 · 1319 阅读 · 0 评论 -
Elastic 劳动力的生成式 AI:ElasticGPT 的幕后解析
Elastic公司推出内部AI助手ElasticGPT,基于RAG框架构建,整合Elastic技术栈实现安全高效的智能问答。该系统核心是私有RAG模型SmartSource,通过Elasticsearch进行向量检索,结合OpenAI的GPT-4o模型生成响应。架构采用ElasticCloud部署,包含前端EUI框架、后端Elasticsearch存储和LangChain编排层,所有交互均受严格安全管控并记录分析。该平台既验证了Elastic的AI能力,也为客户提供了构建企业级生成式AI的参考范例,未来将持原创 2025-07-26 08:31:57 · 1010 阅读 · 1 评论 -
LlamaIndex 和 Elasticsearch Rerankers:无与伦比的简洁
本文介绍了如何从LlamaIndex RankGPT reranker迁移到Elasticsearch内置的语义重排序器。作者通过笔记本电脑产品搜索场景,对比展示了两种重排序方法的应用效果。Elasticsearch提供了开箱即用的重排序功能,可直接集成到检索管道中,无需额外操作且具备可扩展性。文章详细演示了使用LlamaIndex RankGPT和Elastic semantic reranker的具体实现步骤,包括数据准备、索引创建、查询执行和结果对比。测试结果表明,两种方法都能有效提升搜索质量,将高端原创 2025-07-25 21:30:09 · 1231 阅读 · 1 评论 -
分层解析:生成式 AI 和以知识为中心的服务如何简化客户支持
生成式AI与KCS正在重塑客户支持模式。传统分层支持模型因响应延迟、重复沟通导致客户体验不佳。通过整合知识库和非结构化数据,生成式AI能提供实时准确的答案,实现客户自助服务并减少工单量。支持团队可借助AI快速获取解决方案,专注于复杂问题。这种转变使支持从被动响应转向主动预防,同时提升工程师角色价值,将其从重复工作中解放出来,专注于战略咨询和复杂问题解决。Elastic开发的SupportAssistant正是这一理念的实践成果。原创 2025-07-23 16:01:35 · 1028 阅读 · 0 评论 -
制定一个可靠的生成式 AI 数据策略的 4 个步骤
生成式人工智能(GenAI)承诺通过自然语言输出来彻底改变组织及其团队。它承诺提供更快、更智能、更高效的技术,但却从未告诉你如何制定一个有效的策略来最大化 AI 的功能。生成式 AI 成功的关键在于一个能够将你的数据与业务优先级对齐的策略。虽然生成式 AI 的能力具有革命性,但真正的转变发生在数据、IT 和业务策略协同工作的情况下。没有以数据为中心的业务策略,即使是最先进的 AI 模型也可能无法为你的利润带来真正的价值。你最终只会拥有一堆表现不佳的工具。那么,如何确保你的企业能够充分利用生成式原创 2025-07-23 14:59:52 · 1036 阅读 · 0 评论 -
Elasticsearch 是 NVIDIA Enterprise AI Factory 验证设计中推荐的向量数据库
Elastic与NVIDIA合作,将其向量数据库Elasticsearch集成到NVIDIA Enterprise AI Factory验证设计中,为企业提供本地AI解决方案框架。该合作重点优化AI模型部署、多模态数据提取和嵌入生成,并计划通过NVIDIA cuVS库实现GPU加速,提升向量索引构建和查询性能。Elasticsearch将利用GPU优化,进一步巩固其作为向量数据库的领先地位。此次合作建立在Elastic现有优化基础上,旨在支持实时AI应用开发。原创 2025-07-21 23:12:50 · 1016 阅读 · 0 评论 -
AI 驱动的仪表板:从愿景到 Kibana
本文介绍了一种利用大语言模型(LLM)将手绘仪表板图像自动转换为Kibana仪表板的方法。作者通过提供Elasticsearch索引映射和可视化模板,让LLM分析图像内容并生成符合要求的JSON配置,再通过Kibana API创建完整仪表板。该方法解决了直接让LLM生成NDJSON格式时常见的格式错误问题,采用模板替换的方式提高了可靠性和扩展性。文章详细说明了实现步骤,包括数据准备、LLM配置、模板填充和仪表板创建等关键环节,并提供了一个可运行的Python应用示例。最后展示了生成仪表板的URL和ID,证明原创 2025-07-18 15:48:11 · 1377 阅读 · 0 评论 -
Elastic 和腾讯云 AI 搜索技术让敦煌数字经藏对所有人开放
敦煌数字经藏中的古籍现在已实现在线全民可访问。敦煌研究院正式发布了数字经藏数据库,收录了超过 9,900 册敦煌文献和超过 60,700 张包含佛经、法律法规、合同、丝绸画等内容的图片。借助 Elastic 和腾讯云 AI 搜索及大型语言模型( LLM )技术,古籍中的繁体中文和罕见字符被“唤醒”,变得可搜索、可翻译,不再晦涩难懂。敦煌数字经藏将文明深入带入每个人的眼中。原创 2025-07-17 09:48:20 · 850 阅读 · 0 评论 -
Elasticsearch MCP 服务器现已在 AWS Marketplace 上提供
我们很高兴地宣布,Elasticsearch Model Context Protocol( MCP )服务器现已在 AWS Marketplace 上提供。被归类于 AI Tools and Agents 类别,确保客户可以轻松在 AWS 上发现并以容器方式部署 Elasticsearch MCP 服务器。无论你是在构建 AI 助理、智能代理,还是高级分析平台,Elastic 都能为其提供强大支撑。原创 2025-07-17 09:08:47 · 6675 阅读 · 0 评论 -
上下文更长 ≠ 更好:为什么 RAG 仍然重要
摘要: 本文对比了RAG(检索增强生成)与直接使用长上下文LLM(如Gemini1.5)的优劣。实验表明,RAG在成本(低1250倍)、速度(1秒vs45秒)和准确性(100%正确率)上均优于全上下文LLM。后者因处理百万级tokens时易丢失重点且成本高昂,而RAG通过Elasticsearch的混合搜索(全文/语义/过滤)精准筛选信息,显著提升LLM回答质量。结论强调:大上下文模型虽适用于无过滤场景,但RAG仍是高效、经济的首选方案。(150字) 核心发现: 成本:RAG单次查询$0.00008,全LL原创 2025-07-12 09:24:21 · 1293 阅读 · 0 评论 -
安全领域的 AI 采用:主要用例和需避免的错误
AI在网络安全领域呈现双重影响:既提升防御能力又加剧威胁复杂性。文章探讨了AI改变安全运营的五大核心用例:威胁检测、SOC自动化、事件响应、欺诈分析和数据接入。同时指出实施AI时需避免的常见错误:治理不足、访问控制薄弱、数据隐私风险、过度依赖自动化等。建议组织采取数据质量优先、系统集成、人员培训等最佳实践,并强调ElasticSecurity平台如何将AI深度集成到安全分析流程中。文中特别提醒使用第三方AI工具时的数据安全风险,体现了对AI应用合规性的重视。原创 2025-07-11 14:31:22 · 1206 阅读 · 0 评论 -
使用 Maximum Marginal Relevance 实现搜索结果多样化
本文介绍了如何使用Elasticsearch和Python实现最大边际相关性(MMR)算法来优化搜索结果。传统搜索仅关注相关性,容易导致结果冗余(如10条相似的黑色裤子)。MMR通过平衡相关性和多样性,在迭代过程中选择既与查询相关又与已选结果差异化的内容。文章详细讲解了MMR算法原理、实现代码(包括向量搜索和重排序),并展示了在时尚产品搜索中的应用效果对比。最后指出MMR可广泛应用于电商、新闻、推荐系统等场景,通过调整λ参数满足不同需求,强调搜索不仅需要相关性,也需要多样性才能带来更好的用户体验。原创 2025-07-11 14:03:44 · 1288 阅读 · 0 评论 -
Semantic text 就是那么强大,还附带一包( BBQ )薯片!配有可配置的分块设置和索引选项。
摘要:Elasticsearch 8.19/9.1版本增强了semantic_text搜索功能,支持自定义分块设置和向量量化配置。用户现在可以灵活控制文本分块策略(基于句子/单词/禁用分块)和量化方法(如BBQ),以适应专业用例需求。这些改进使语义搜索既保持开箱即用的便捷性,又提供高级配置选项,同时兼容未来功能扩展。新特性已在Serverless环境中可用,即将登陆Stack托管的Elasticsearch。(149字)原创 2025-07-10 08:20:57 · 1120 阅读 · 0 评论 -
Elasticsearch:异常检测入门
本文介绍了在Elastic Stack 9.0.2中使用机器学习进行异常检测的实践方法。通过Kibana自带的示例数据,展示了如何创建三种不同类型的异常检测作业:单指标作业、多指标作业和群体作业。文章详细讲解了数据探索、作业配置、结果分析等关键步骤,并演示了如何使用SingleMetricViewer和AnomalyExplorer工具查看检测结果。此外,还介绍了利用机器学习模型进行未来行为预测的方法。整个过程突出了机器学习在运维场景中的价值,能够自动识别异常事件,减轻人工监控负担,帮助运维人员提前发现潜在原创 2025-07-03 15:26:16 · 779 阅读 · 0 评论 -
祝贺我们首批通过 Elastic 认证的生成式 AI 销售合作伙伴
摘要:Elastic推出生成式AI合作伙伴认证计划,首批认证的合作伙伴包括GIOS、KPMG等6家欧洲和中东企业。这些合作伙伴已完成严格的ElasticAI培训,具备开发RAG解决方案等能力。Elastic通过向量数据库和AI集成,简化企业AI应用开发流程。认证合作伙伴将帮助客户克服AI试点到规模化应用的挑战,提供专业技术支持和创新方案。Elastic强调合作伙伴在推动AI解决方案落地中的关键作用,同时提醒用户注意第三方AI工具的数据安全风险。(149字)原创 2025-07-02 15:11:33 · 977 阅读 · 0 评论 -
使用 JavaScript、Mastra 和 Elasticsearch 构建一个具备代理能力的 RAG 助手
在这篇文章中,我们将探索如何使用 Mastra 和一个轻量级的 JavaScript Web 应用来构建一个具备代理能力的 RAG 助手,并与它进行交互。通过将这个代理连接到 Elasticsearch,我们为它提供了访问结构化球员数据的能力,并能执行实时统计聚合,从而为你提供基于球员数据的推荐。前往 GitHub 仓库查看详情;README 文件提供了如何克隆并在本地运行该应用的说明。原创 2025-07-02 14:45:22 · 1326 阅读 · 0 评论 -
Elastic 线下 Meetup 将于 2025 年 7 月 27 号下午在深圳举行
2025ElasticMeetup深圳站将于7月27日在腾讯滨海大厦举行,聚焦AI驱动搜索技术前沿。活动邀请Elastic、腾讯云等专家分享向量搜索、RAG技术演进、百亿级AISearch优化实践等议题,涵盖搜索智能化、多模态检索、日志系统应用等热点。刘晓国、陈曦等资深技术人将深入解析行业趋势,活动还设有茶歇交流及抽奖环节。需提前实名报名并验证入场。原创 2025-07-01 09:41:47 · 1345 阅读 · 0 评论 -
你以为 Elastic 只做 SIEM?再好好想想!
Elastic重新定义XDR安全防护,通过收购Endgame技术深度整合EDR能力,打造原生统一的安全平台。该方案突破传统EDR的数据处理瓶颈,支持PB级端点、网络、云端数据的实时关联分析,提供跨厂商的无缝防护。平台包含获奖级恶意软件防护、勒索软件防御和行为检测能力,支持Windows/macOS/Linux全平台。创新采用"数据湖"付费模式,仅按实际使用数据计费,包含无限端点授权。通过开源检测规则、AI辅助分析和自动故障排查等功能,实现透明化安全运营。在AV-Comparatives测原创 2025-06-28 11:12:08 · 1046 阅读 · 0 评论 -
使用 Elasticsearch 构建一个用于真实健康数据的 MCP 服务器
摘要:本文介绍了如何使用FastMCP框架和Elasticsearch构建一个MCP(Model Context Protocol)服务器来管理和分析Apple Health健康数据。文章详细讲解了MCP的三个核心组件(Resources、Tools和Prompts)的实现方法,展示了如何将Elasticsearch作为数据存储后端,并通过Claude Desktop实现自然语言交互查询。该解决方案支持动态数据查询、趋势分析和可视化展示,为LLM代理提供了实时健康数据访问能力。文中包含完整的代码实现、测试方原创 2025-06-27 10:03:13 · 1212 阅读 · 0 评论 -
Elastic:AI,开箱即用!
Elastic宣布其AI功能现已在Elastic Cloud中默认启用,消除了传统AI部署的复杂流程。该解决方案提供了开箱即用的托管LLM,支持安全、可观测性和搜索领域的AI应用,包括威胁检测、根因分析和自然语言查询等功能。Elastic独特的优势在于将AI深度集成到现有工作流中,支持检索增强生成(RAG)技术,并能统一访问各类数据源。同时平台保持开放架构,允许用户连接第三方LLM。该方案显著降低了AI使用门槛,使企业能立即获得AI驱动的安全防护和运维洞察,无需额外配置或签署第三方合同。原创 2025-06-26 09:05:07 · 1299 阅读 · 0 评论 -
开始使用 Elastic AI Assistant for Observability 和阿里 Qwen3
本文演示了如何结合Qwen3大模型与Elastic AI Assistant进行日志分析。首先通过Elastic DevTools添加了一条代理服务错误日志记录,然后配置AI Assistant连接器。在Observability模块中安装知识库后,用户可通过自然语言查询(如询问代理服务的临时错误原因)与日志数据进行交互分析。文章还提到当前版本(9.0.01)存在特殊配置需求,并预告后续将介绍使用Kibana创建知识库的方法。整个过程展示了AI技术如何帮助开发者更直观地理解和排查系统问题。原创 2025-06-25 09:01:56 · 1044 阅读 · 0 评论 -
如何在 Python 中连接 Elasticsearch 并使用 Qwen3 来实现 RAG
本文介绍了如何在本地部署阿里Qwen3大模型并连接到Elasticsearch实现RAG应用。主要内容包括: 创建Elasticsearch API key获取访问凭证 编写Python代码实现RAG流程,包括Elasticsearch查询、上下文构建和Qwen3模型调用 配置环境变量和证书,确保代码正常运行 测试Qwen3模型接口工作正常 修改代码适配最新Elasticsearch版本的数据结构 最终成功运行示例查询"哪些人在茶会",Qwen3准确识别出故事中的角色并给出详细回答 文章原创 2025-06-23 22:01:21 · 2195 阅读 · 0 评论 -
通过 AIOps 、生成式 AI 和机器学习实现更智能的可观测性
AIOps:智能运维的未来 摘要:AIOps通过AI和机器学习技术优化IT运维,帮助团队应对云原生时代的数据爆炸、系统复杂性和快速变化三大挑战。它能自动分析海量运维数据,减少告警噪音,加速根因分析,并降低MTTR。随着生成式AI的兴起,AIOps正从解释日志、代码转换等基础功能,向具备上下文感知的智能助理演进。Elastic等平台已整合AI助理和语义搜索能力,但完全自主的运维代理仍需突破推理规划等技术瓶颈。AIOps正从可选能力转变为现代IT运维的核心竞争力,通过渐进式部署可有效建立组织信任,最终实现业务价原创 2025-06-22 11:25:16 · 892 阅读 · 0 评论 -
Elastic 在 Microsoft Build 2025 —— 开发者,开发者,开发者!
Elastic以顶级赞助商身份亮相Microsoft Build 2025开发者大会,重点展示其AI创新成果。大会期间,Elastic将通过技术会议、现场演示(5月20日Theater B)和展台交流(#200),向开发者介绍Azure LLM与Elasticsearch的智能搜索集成、LLM可观测性方案等新技术。同时宣布多项重要进展:Elasticsearch正式支持混合搜索和BBQ向量数据库优化技术;推出Security自动迁移功能;Elastic Cloud Serverless即将在Azure正式发原创 2025-06-19 10:22:27 · 966 阅读 · 0 评论 -
炒作已经结束:生成式 AI 正推动企业搜索的发展
Accenture与Elastic合作推动企业生成式AI应用转型。随着2025年生成式AI进入生产阶段,企业需要构建强大的数据基础。双方合作结合Elastic的AI搜索技术和Accenture的行业专长,帮助企业优化数据利用。Elastic的多阶段检索策略和Accenture的"手术室"流程显著提升搜索准确性。典型案例显示,采用该方案的企业已实现95%相关性提升和50%检索加速。文章强调,企业应着眼AI驱动的业务流程重塑,而非简单自动化,并建议从高成功率的内部场景切入。通过建立可搜索的知原创 2025-06-18 11:44:52 · 698 阅读 · 0 评论 -
使用 Elasticsearch 提升 Copilot 能力
了解如何将 Elasticsearch 与 Microsoft 365 Copilot Chat 和 Microsoft Teams 中的 Copilot 搭配使用。原创 2025-06-18 11:09:40 · 1398 阅读 · 0 评论 -
Elasticsearch Open Inference API 新增对 Cohere 的 Rerank 3 模型支持
Reranker 会对现有向量搜索或关键词搜索系统返回的 “前 n 个结果” 进行语义增强,不需要更换模型或更改数据索引,就能显著提升这些结果的相关性,使其更适合作为上下文传递给大语言模型(LLMs)。Elastic 最近与 Cohere 合作,使 Elasticsearch 开发者能轻松使用 Cohere 的。原创 2025-06-17 10:36:09 · 972 阅读 · 0 评论 -
IBM 与 Elasticsearch 合作,通过 watsonx Assistant 提供对话式搜索
IBM与Elasticsearch合作,为watsonx Assistant集成检索增强生成(RAG)能力,提供基于企业数据的对话式AI搜索功能。通过Elasticsearch向量数据库支持多模态数据检索和混合搜索,结合IBM Granite等大语言模型,实现业务上下文的智能对话体验。IBM watsonx Discovery平台与Elasticsearch深度整合,提供语义搜索、联合搜索和向量搜索能力,助力企业快速构建AI助手。该方案显著提升AI应用开发效率(8-32倍),支持开箱即用的ELSER语义搜索原创 2025-06-17 09:37:18 · 682 阅读 · 0 评论 -
Elasticsearch 开放推理 API 增加对 IBM watsonx.ai rerank 模型的支持
Elasticsearch开放推理API新增对IBM watsonx.ai rerank模型的支持,提升语义搜索体验。通过集成IBM watsonx reranker,用户无需重新索引即可实现高相关性搜索排序。文章详细介绍了在Elasticsearch Serverless项目中使用IBM watsonx API密钥创建推理端点、配置索引数据,以及通过text_similarity_reranker进行语义重排搜索的完整流程。测试结果显示,相比传统关键词匹配,语义重排能更准确地返回上下文相关结果。该集成增强原创 2025-06-17 09:18:25 · 1387 阅读 · 0 评论 -
Elasticsearch:什么是异常检测?
异常检测摘要 异常检测是识别数据中偏离正常模式的技术,用于发现潜在问题或威胁。常见异常类型包括点异常(单个异常值)、上下文异常(环境相关异常)、集体异常(群体模式异常)、时间异常(时序偏差)及空间异常(地理分布异常)。其核心流程为建立基线模型、比对新数据、验证并处理异常。主要技术分为基于规则和机器学习(监督/无监督/半监督学习)两类,广泛应用于网络安全、系统监控、欺诈检测等领域。虽然能提前预警风险,但也面临数据标注不足、误报/漏报平衡等挑战。最佳实践强调数据理解、技术适配和持续优化。Elastic等工具提供原创 2025-06-16 11:30:57 · 902 阅读 · 0 评论 -
什么是商业中的人工智能 ?
什么是商业中的人工智能 ?商业中的 AI 有助于提升生产力并简化运营,从而提升商业价值。像 machine learning、 deep learning 和 natural language processing (NLP) 这样的人工智能技术利用数据的力量,在解决问题和做决策方面实现了超越人类能力的规模。诸如 predictive analysis 这样的能力 —— 可以使用数据预测未来结果并基于趋势建模可能性——以实际方式体现了 AI 的优势。从日常生产力到推动创新, AI 也彻底改变了商业。原创 2025-06-16 10:57:02 · 1157 阅读 · 0 评论 -
Elasticsearch:什么是混合搜索?
混合搜索(Hybridsearch)是一种融合关键词搜索和语义搜索的新型检索方式,通过结合传统精确匹配与语义理解的优势,显著提升搜索精准度。它将BM25排序算法与向量搜索技术相结合,既能处理精确关键词匹配(稀疏向量),又能理解查询意图和上下文(密集向量)。混合搜索特别适合处理模糊查询和复杂语义场景,在电商、企业文档等应用中展现优势。与检索增强生成(RAG)技术结合后,还能为生成式AI提供更准确的上下文信息。Elastic等平台已提供开箱即用的混合搜索解决方案,使开发者能轻松实现更智能的搜索体验。原创 2025-06-15 12:29:24 · 1024 阅读 · 0 评论 -
使用 Azure LLM Functions 与 Elasticsearch 构建更智能的查询体验
摘要:本文介绍了一个结合Azure GenAI LLM与Elasticsearch的智能房地产搜索应用示例。通过GitHub Codespaces可快速配置运行该应用,实现精准灵活的混合搜索体验。文章详细说明了从创建Elasticsearch索引、配置搜索模板,到部署Azure OpenAI服务和Azure Maps的完整流程。该应用采用分层架构,利用LLM解析用户查询,并通过参数提取、地理编码和搜索工具生成结构化搜索请求,最终在Elasticsearch中执行混合搜索。读者可按照教程创建云资源,配置环境,原创 2025-06-14 18:13:00 · 1570 阅读 · 0 评论 -
下一代观测技术的进化:通过 OpenTelemetry 和生成式 AI 实现数据统一
生成式AI与机器学习正在重塑观测技术,但数据孤岛阻碍了其潜力发挥。本文探讨如何通过OpenTelemetry统一日志、指标和追踪,打破数据壁垒,释放生成式AI在自然语言调查、根因分析和主动运维中的全部能力。传统观测工具将数据割裂存储,导致AI分析时面临信息不完整、关联困难等问题。而统一存储的丰富日志(包含完整上下文数据)与生成式AI结合,可实现跨维度智能分析、自然语言查询和预测性维护。文章展示了OpenTelemetry实现方案,并指出统一数据将推动观测从被动响应向主动运维进化,为企业带来更高效的问题诊断和原创 2025-06-13 11:04:10 · 1126 阅读 · 0 评论 -
MCP(Model Context Protocol,模型上下文协议)的当前状态
了解 MCP、项目更新、功能、安全挑战、新兴用例,以及如何动手操作 Elastic 的 Elasticsearch MCP 服务器。Model Context Protocol(MCP)正迅速成为 AI 智能体和上下文丰富型 AI 应用程序的基础构建模块。在这篇文章中,我将介绍会议上的关键更新、新兴用例、MCP 的发展前景,以及如何动手操作 Elastic 的 Elasticsearch MCP 服务器。原创 2025-06-13 10:21:51 · 1942 阅读 · 0 评论 -
ES8 向量功能窥探系列(二):向量数据的存储与优化
本文深入解析了Elasticsearch 8.16.1的向量存储机制,重点探讨了向量索引类型(Flat、HNSW及量化索引)的构成与读写流程。腾讯云ES团队通过对源码的改造优化,在自研v-pack插件中实现了"行存裁剪"和"量化裁剪"两大创新功能,分别可节省70%和90%的存储空间。文章详细对比了不同索引配置下的存储效能变化,并展示了量化技术在保证召回率的同时显著降低内存和磁盘消耗的技术实现。这些优化已贡献给社区并集成于腾讯云ES最新版本,为向量搜索场景提供了更高效的原创 2025-06-08 11:05:52 · 1390 阅读 · 0 评论 -
ES8 向量功能窥探系列(一):混合搜索功能初探与增强
Elasticsearch 8.x 引入了强大的向量搜索功能,使得在大规模数据集上进行高效的k近邻(kNN)搜索成为可能。向量搜索在许多应用场景中都非常重要,例如RAG、推荐系统、图像搜索等等。本文旨在深入浅出地剖析 Elasticsearch 8.x 的 kNN 搜索和混合搜索功能,介绍其实现原理和关键技术点。同时,我们还将解读腾讯云 ES 对社区做出的相关贡献,通过源码级别的解读,帮助读者更好地理解和应用 Elasticsearch 的向量搜索功能。原创 2025-06-08 10:35:26 · 1893 阅读 · 0 评论