动态规划数字三角形模型——AcWing 275. 传纸条

动态规划数字三角形模型

定义

动态规划数字三角形模型是在一个三角形的数阵中,通过一定规则找到从顶部到底部的最优路径或最优值。

运用情况

通常用于解决具有递推关系、需要在不同路径中做出选择以达到最优结果的问题。比如计算最短路径、最大和等。

计算其他类型的最优值。比如,要求找到从顶部到底部路径上数字乘积最大,或者找到具有某种特定属性(如奇数个数最多等)的最优路径。

注意事项

  • 状态定义的准确性:要仔细分析问题,选择最能简洁且准确反映问题本质的状态表示。如果定义不当,可能导致后续递推关系复杂或无法正确求解。
  • 边界条件的多样性:不同问题的边界条件可能不同,比如三角形顶部的状态初始化,或者边缘位置的特殊处理等。
  • 递推关系的严谨性:需要充分考虑各种可能情况,确保递推关系涵盖了所有可能的决策和状态转移。

解题思路

  • 在确定状态时,有时可能需要结合一些额外的信息,比如记录路径本身或其他相关属性。
  • 递推关系的建立可能需要综合考虑多个因素,甚至可能引入辅助数组或变量来辅助计算。
  • 对于复杂的数字三角形问题,可能需要分阶段或分层进行递推计算,逐步逼近最终的最优解。

例如,在一个更复杂的数字三角形中,除了数字本身,每个位置还有一个权重,要求在权重限制下找到最大和。这时状态可能需要扩展为 dp[i][j][k] 表示到达第 i 行第 j 列且当前权重为 k 时的最大和,递推关系也会相应变得更加复杂。通过这样的细致分析和设计,可以更好地运用动态规划数字三角形模型解决各种实际问题。

AcWing 275. 传纸条

题目描述

275. 传纸条 - AcWing题库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

筱姌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值