- 博客(121)
- 收藏
- 关注

原创 HQDec:基于高质量解码器的自监督单目深度估计-2024-TCSVT(中科院一区TOP,2024 IF=8.4)
42]利用3D填充块来保留重要的空间细节,但忽略了多层信息交换的好处。第三,为了获得视差值,目前大多数方法[25]-[28],[30],[31],[38],[40],[42],[55],[56]直接使用局部二维卷积,然后使用sigmoid函数将解码器输出的特征映射回归到视差值;最后,为了解决自监督单眼方法[25][28],[30],[40],[57]中固有的尺度模糊问题,我们提出了一种自适应尺度对齐策略,通过考虑中值和平均值信息,将获得的估计结果缩放到用光探测和测距(LiDAR)测量的真实情况。
2023-10-10 20:18:36
9191
1

原创 CbwLoss:高效解决动态场景下以及弱纹理下单目深度估计问题(2023-TITS,中科院一区TOP,2023 IF=9.551)
为了解决这些问题,在本文中,我们分别利用流场之间的差异,以及仿射变换和视图合成产生的深度结构之间的差异来处理运动物体和遮挡。其次,我们通过测量具有更多语义和上下文信息的特征之间的差异来减轻无纹理区域对模型优化的影响,而不需要额外的网络。大量的实验和可视化分析证明了所提出方法的有效性,在相同的条件下,该方法优于现有的最先进的自监督方法,并且不引入额外的辅助信息。然后,我们根据一致性检查计算掩模,并使用这些掩模对光度损失进行加权,以减少相应区域的贡献,从而满足基于静态场景的图像重建的基本假设。
2023-09-10 23:29:44
9505
1
原创 ICCV 2025 Accepted Papers (十四)
ID # 2601 # paper title # DIMCIM: A Quantitative Evaluation Framework for Default-mode Diversity and Generalization in Text-to-Image Generative ModelsAuthors # Revant Teotia · Candace Ross · Karen Ullrich · Sumit Chopra · Adriana Romero-Soriano · Melissa H
2025-07-20 21:27:39
882
原创 ICCV 2025 Accepted Papers (十三)
ID # 2401 # paper title # PixTalk: Controlling Photorealistic Image Processing and Editing with LanguageAuthors # Marcos Conde · Zihao Lu · Radu TimofteID # 2402 # paper title # Pseudo-SD: Pseudo Controlled Stable Diffusion for Semi-Supervised and Cross-Do
2025-07-20 21:26:56
833
原创 ICCV 2025 Accepted Papers (十二)
Authors # Liwei Luo · 帅滕远 李 · Dongwei Ren · Qilong Wang · Pengfei Zhu · Qinghua Hu。
2025-07-20 21:26:10
612
原创 ICCV 2025 Accepted Papers (十一)
ID # 2001 # paper title # OphCLIP: Hierarchical Retrieval-Augmented Learning for Ophthalmic Surgical Video-Language PretrainingAuthors # Ming Hu · Kun yuan · Yaling Shen · feilong tang · Xiaohao Xu · Lin Zhou · Wei Li · Ying Chen · Zhongxing Xu · Zelin Pen
2025-07-20 21:25:17
612
原创 ICCV 2025 Accepted Papers (九)
ID # 1601 # paper title # Combinative Matching for Geometric Shape AssemblyAuthors # Nahyuk Lee · Juhong Min · Junhong Lee · Chunghyun Park · Minsu ChoID # 1602 # paper title # Frequency-Aligned Knowledge Distillation for Lightweight Spatiotemporal Forecas
2025-07-20 21:23:35
961
原创 ICCV 2025 Accepted Papers (八)
ID # 1401 # paper title # OccluGaussian: Occlusion-Aware Gaussian Splatting for Large Scene Reconstruction and RenderingAuthors # Shiyong Liu · Xiao Tang · Zhihao Li · Yingfan He · Chongjie Ye · Jianzhuang Liu · Binxiao Huang · Shunbo Zhou · Xiaofei WuID #
2025-07-20 21:21:47
956
原创 ICCV 2025 Accepted Papers (七)
ID # 1201 # paper title # VisNumBench: Evaluating Number Sense of Multimodal Large Language ModelsAuthors # Tengjin Weng · Jingyi Wang · Wenhao Jiang · Zhong MingID # 1202 # paper title # StepGRPO: Learning to Reason with Multimodal Large Language Models v
2025-07-20 21:20:36
745
原创 ICCV 2025 Accepted Papers (四)
ID # 601 # paper title # ForeSight: Multi-View Streaming Joint Object Detection and Trajectory ForecastingAuthors # Sandro Papais · Letian Wang · Brian Cheong · Steven WaslanderID # 602 # paper title # DialNav: Multi-turn Dialog Navigation with a Remote Gu
2025-07-20 21:16:50
913
原创 ICCV 2025 Accepted Papers (三)
Authors # Wei 廖伟 · Chunyan Xu · Chenxu Wang · Zhen Cui。
2025-07-20 21:15:40
934
原创 ICCV 2025 Accepted Papers (二)
ID # 201 # paper title # Sat2City: 3D City Generation from A Single Satellite Image with Cascaded Latent DiffusionAuthors # Tongyan Hua · Lutao Jiang · Ying-Cong Chen · Wufan ZhaoID # 202 # paper title # Stable Diffusion Models are Secretly Good at Visual
2025-07-20 21:14:25
900
原创 解决无法访问 HuggingFace
摘要:本文介绍了如何通过命令行设置环境变量HF_ENDPOINT为国内镜像地址(如hf-mirror.com),以提升访问速度。只需执行export HF_ENDPOINT=https://hf-mirror.com即可完成配置。该方法简单有效,适用于需要优化访问性能的场景。
2025-06-24 22:45:43
211
原创 ubuntu下实时检测机械硬盘和固态硬盘温度
本文介绍了如何在Linux系统中使用smartmontools工具监控硬盘温度。首先,通过sudo apt update和sudo apt install smartmontools命令安装工具。接着,使用sudo smartctl -a /dev/sda查看硬盘详细信息,包括温度。虽然smartctl无法实时显示温度,但可以通过watch命令定期查看,如watch -n 10 "sudo smartctl -a /dev/sda | grep Temperature_Celsius",
2025-05-20 21:57:39
780
原创 conda 安装cudnn
搜索并安装 cuDNN:使用以下命令搜索可用的 cuDNN 版本,并安装适合你 CUDA 版本的 cuDNN。添加 Conda 通道:为了通过 Conda 安装 cuDNN,你需要添加 NVIDIA 的 Conda 通道。如果没有安装 CUDA,你需要先从 NVIDIA CUDA Toolkit 下载并安装。通过 Conda 安装 cuDNN。
2025-05-06 22:01:15
544
原创 解决Could not load dynamic library ‘libcudart.so.10.1‘; dlerror: libcudart.so.10.1: cannot open shared
【代码】解决Could not load dynamic library 'libcudart.so.10.1';
2025-05-06 21:54:16
153
原创 解决报错:AttributeError: module ‘urllib‘ has no attribute ‘urlretrieve‘
在 Python 3.x 版本中,urllib 模块的 urlretrieve 函数已经被废弃,并在 Python 3.3 版本之后从标准库中移除。取而代之的是 urllib.request 模块,其中提供了 urlretrieve 函数的功能。你可以使用 urllib.request.urlretrieve 来实现相同的功能。如何使用 urllib.request 替代 urllib.urlretrieve。
2025-04-20 11:16:56
171
原创 解决报错TypeError: load_all() missing 1 required positional argument: ‘Loader‘
YAML 5.1版本后弃用了yaml.load(file)这个用法,因为觉得很不安全,5.1版本之后就修改了需要指定Loader,通过默认加载器(FullLoader)禁止执行任意函数,该load函数也变得更加安全。用以下三种方式都可以。
2025-04-20 11:02:21
529
原创 解决requests.exceptions.ChunkedEncodingError: (‘Connection broken: IncompleteRead
这段代码中,首先我们发送了一个GET请求到指定的URL,然后检查响应的header中是否包含’x-content-type-options’字段。最后,我们使用assert语句来验证是否成功设置了’x-content-type-options’字段的值为’nosniff’。然而,根据我的观察,当我使用requests 2.20.0版本发送请求时,响应的header中没有包含’x-content-type-options’字段,这可能会导致潜在的安全问题。
2025-04-11 16:13:48
497
原创 windows系统下查看cpu的序列号
CPU序列号是独一无二的标识符,具有终身不变的特性。由于CPU外在的所有标记都可以人为改动,而序列号是内置于CPU内部的,因此只能通过软件读取。利用这个原理,CPU ID工具可以显示出CPU的确切信息,包括移动版本、主频、外频、二级缓存等关键信息,从而查出超频的CPU。此外,序列号还可以用于验证盒装CPU的真伪,确保购买的产品是原装的。以管理员身份运行 cmd。
2025-03-28 16:33:29
2464
原创 RuntimeError: view size is not compatible with input tensor‘s size and stride (at least one dimensio
view操作要求tensor的内存连续存储,所以在view前面需要先使用contiguous()xx.view(-1) 改为 xx.contiguous().view(-1)
2025-03-15 19:56:18
241
原创 如何使用HF-Mirror 快速从hf-mirror.com下载数据
huggingface 工具链会获取HF_ENDPOINT环境变量来确定下载文件所用的网址,所以可以使用通过设置变量来解决。可以添加 --local-dir-use-symlinks False 参数禁用文件软链接,这样下载路径下所见即所得,详细解释请见上面提到的教程。hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 aria2,可以做到稳定高速下载不断线。huggingface-cli 是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。方法三:使用 hfd。
2025-03-15 10:30:33
1541
原创 CbwLoss Constrained Bidirectional Weighted Loss for Self-Supervised Learning of Depth-TITS-1区TOP
为了解决这些问题,在本文中,我们分别利用流场之间的差异,以及仿射变换和视图合成产生的深度结构之间的差异来处理运动物体和遮挡。其次,我们通过测量具有更多语义和上下文信息的特征之间的差异来减轻无纹理区域对模型优化的影响,而不需要额外的网络。大量的实验和可视化分析证明了所提出方法的有效性,在相同的条件下,该方法优于现有的最先进的自监督方法,并且不引入额外的辅助信息。然后,我们根据一致性检查计算掩模,并使用这些掩模对光度损失进行加权,以减少相应区域的贡献,从而满足基于静态场景的图像重建的基本假设。
2025-03-14 22:54:19
1048
原创 HQDec: Self-Supervised Monocular Depth Estimation Based on a High--2024-TCSVT(中科院一区TOP,2024 IF=8.4)
42]利用3D填充块来保留重要的空间细节,但忽略了多层信息交换的好处。第三,为了获得视差值,目前大多数方法[25]-[28],[30],[31],[38],[40],[42],[55],[56]直接使用局部二维卷积,然后使用sigmoid函数将解码器输出的特征映射回归到视差值;最后,为了解决自监督单眼方法[25][28],[30],[40],[57]中固有的尺度模糊问题,我们提出了一种自适应尺度对齐策略,通过考虑中值和平均值信息,将获得的估计结果缩放到用光探测和测距(LiDAR)测量的真实情况。
2025-03-14 22:50:56
836
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人