
DeepSeek
文章平均质量分 92
神马行空
AIGC及其应用、云计算、云原生、架构设计、技术开发....
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
一文解读DeepSeek在保险业的应用
随着人工智能技术的深度渗透,保险行业正经历从传统经验驱动向数据智能驱动的转型。作为国产高性能开源大模型的代表,DeepSeek 凭借其低成本、高推理效率及跨模态处理能力,已成为保险机构突破服务瓶颈、重构业务逻辑的核心工具。截止目前,已有超过 20 家保险公司完成 DeepSeek 本地化部署,覆盖精准营销、智能核保、客户服务、运营效率优化等核心场景,推动行业向智能化、精细化方向加速升级。原创 2025-04-01 22:07:44 · 1218 阅读 · 0 评论 -
一文解读DeepSeek在银行业的应用
随着人工智能技术的快速发展,大语言模型(LLM)已成为银行业数字化转型的核心驱动力。作为高性能开源大模型的代表,DeepSeek 凭借其低成本、高推理效率及跨场景适配能力,正加速渗透至银行核心业务场景。据不完全统计,截至 2025 年 3 月,已有包括国有大行、股份制银行及城商行在内的 20 余家银行完成 DeepSeek 本地化部署,覆盖精准营销、智能风控、客户服务、投资决策等领域,推动银行业务效率提升与服务模式重塑。原创 2025-04-01 21:28:38 · 1914 阅读 · 0 评论 -
一文解读DeepSeek大模型在政府工作中具体的场景应用
本文以政务内部管理的视角,介绍DeepSeek大模型在政务数字化在转型中的提质增效应用!政务本是一个复杂的系统,对外要提供公共服务,对内有严格的安全管理要求。DeepSeek大模型在政务系统中的应用,对外提升服务水平,对内增强办公效率,一体两面,全力引领政务数字化加速转型!原创 2025-03-30 06:30:45 · 1424 阅读 · 0 评论 -
一文解读DeepSeek大模型在政务服务领域的应用
随着政务数字化转型的深入,以DeepSeek为代表的大模型技术正逐步成为提升政府服务效能的核心驱动力。通过自然语言处理、多模态数据融合和深度学习等技术,DeepSeek在智能问答、政策分析、城市治理等场景中展现出强大的能力。其低成本、高适配性的特点,尤其为中小城市和基层政务提供了普惠化AI解决方案。目前,全国已有超100家政府单位接入DeepSeek,覆盖民生服务、行政审批、城市管理等多个领域,显著提升了政务服务的智能化水平。原创 2025-03-28 22:10:11 · 1572 阅读 · 0 评论 -
一文解读DeepSeek在智能驾驶领域的应用
说到智能驾驶,很多人会想到“烧钱”的高科技,但DeepSeek这个大模型正在让它变得更接地气!简单来说,它就像给车装了一个“人脑级AI助手”,既能听懂你随口说的“找条不堵的路”,也能看懂路况、指挥车辆精准停靠。举个例子,你开车时说“我有点冷”,它不光会调空调,还能贴心地关天窗;物流卡车用上它,甚至能组队自动驾驶,省油又高效。现在,吉利、东风这些大厂都和它合作,把车从“铁盒子”变成会学习、懂生活的伙伴。虽然还有数据安全这些挑战,但DeepSeek确实让“人人用得起智能车”的未来更近了一步!原创 2025-03-26 21:32:43 · 1033 阅读 · 0 评论 -
一文解读DeepSeek在工业制造领域的应用
在当今数字化浪潮席卷全球的背景下,各个行业都在积极寻求创新与变革,工业制造领域也不例外。然而,传统工业制造在生产效率、质量控制、成本管理等方面面临着诸多挑战。在这一关键时期,人工智能技术的兴起为工业制造带来了新的机遇。DeepSeek作为一种前沿的人工智能技术,逐渐走进了工业制造领域的视野。本文将深入探讨DeepSeek在工业制造领域的应用现状、优势以及面临的挑战,旨在为相关企业和从业者提供有价值的参考,助力工业制造向智能化、高效化方向迈进。原创 2025-03-25 22:17:31 · 2058 阅读 · 3 评论 -
一文解读DeepSeek的安全风险、挑战与应对策略
DeepSeek作为中国领先的AI大模型提供商,凭借其开源、低成本和高性能的优势,迅速在全球AI市场占据重要地位。然而,随着其应用范围的扩大,DeepSeek在数据安全、模型漏洞、网络攻击等方面面临严峻挑战。本文基于最新公开资料,系统分析DeepSeek的安全风险、行业影响及应对策略,为企业和政策制定者提供参考。原创 2025-03-25 21:35:29 · 2611 阅读 · 0 评论 -
一文解锁DeepSeek大模型参数【671B、70B、32B、14B、8B、7B】
大模型的参数是深度学习模型中的核心组成部分,它们决定了模型对输入数据的表示学习能力以及最终的预测或决策能力,即影响大模型“智商”的决定性因素!DeepSeek大模型参数【671B、70B、32B、14B、8B、7B】是什么以及啥作用,本文就来了解一下这些参数背后的原理!原创 2025-03-25 10:12:25 · 4265 阅读 · 0 评论 -
一文解读DeepSeek在法律商业仲裁细分行业的应用
AI技术正在像水电煤一样渗透生活,随着DeepSeek的爆火出圈,全国各行各业都在如火如荼地接入DeepSeek,以期望利用DeepSeek的“超能力”来重塑各自行业的效能和格局!过去企业打官司动辄耗上数月,如今借助DeepSeek的能力,将法律(尤其是法律行业的“老大难”——商业仲裁)AI化,直接把纠纷解决推进“高铁时代”。它像一位24小时在线的超级法务:10分钟就能从几百页合同里揪出核心矛盾,自动匹配法律条文;仲裁书一键生成,错误率暴降73%;甚至连找哪个仲裁员最专业,都能用大数据“精准推送”。原创 2025-03-23 22:06:16 · 1668 阅读 · 0 评论 -
一文解读DeepSeek训练数据集
本文重点以DeepSeek为例,详细介绍预训练数据集相关内容。大语言模型LLM(如DeepSeek、ChatGPT、文心一言等)的“智慧”源于它们学习的海量数据集。简单来说,数据集就是模型的“知识库”,通常由互联网公开的文本、图片、视频等。这些数据需满足两个特点:规模大和多样性。规模大是指数据量可达千亿级词汇,让模型学习复杂规律;多样性则涵盖多领域(如科技、文学)、多语言、多形式(对话、新闻),帮助模型适应不同场景。例如,训练数据中既有百科知识,也有日常对话,模型才能既解答专业问题,又能闲聊。原创 2025-03-17 14:09:50 · 4189 阅读 · 0 评论 -
简单5步【DeepSeek+Xmind】王炸组合生成思维脑图,办公效率起飞【建议收藏】
一步一步实操教会Deepseek与Xmind生成思维导图的王炸组合,协同应用显著提升办公效率:通过Deepseek智能助手快速提炼信息、生成结构化内容,再结合Xmind的可视化思维导图功能,可将复杂数据转化为清晰逻辑框架。这种AI分析与图形化呈现的闭环工作流,使会议纪要整理、项目规划等场景效率提升50%以上,同时增强团队协作的信息传达精准度。本文以【文档转思维导图】的场景为例进行详细讲解!原创 2025-03-15 22:34:04 · 1181 阅读 · 0 评论 -
DeepSeek在金融行业应用
随着人工智能技术的快速发展,DeepSeek作为一款国产大模型,凭借其强大的语义理解、逻辑推理和多模态处理能力,在金融行业迅速崭露头角。其低成本、高效率和开源特性使其成为金融机构智能化转型的重要工具。本文旨在分析DeepSeek在金融行业的应用现状、典型案例及未来发展趋势。原创 2025-03-14 16:28:57 · 1274 阅读 · 0 评论 -
Deepseek在医疗行业的应用
DeepSeek通过赋能诊疗、研发、管理全链条,已成为医疗行业智能化转型的核心驱动力。尽管面临数据安全与伦理挑战,但其在效率提升和成本优化方面的价值已获广泛验证。未来,随着技术成熟与政策完善,DeepSeek有望进一步渗透至基层医疗和慢性病管理等长尾场景,推动医疗资源普惠化。原创 2025-03-14 09:03:30 · 1757 阅读 · 0 评论 -
DeepSeek对各行业带来的冲击与机会,以及该如何应对
2025年,DeepSeek 作为一款高性能、低成本的开源大语言模型,将对多个行业带来深远影响。随着人工智能浪潮的涌起,大到国家的运势,小到个人的办公效率,无不受到不同程度的影响和改变,并且随着技术不断的成熟和落地,改变也会越来越快速、越来越强烈,未来已来!本文从冲击、机会和应对策略三个方面进行分析和解读!原创 2025-03-04 22:24:25 · 2020 阅读 · 0 评论 -
一文解读DeepSeek开源周【Open Source Week】解锁的那些硬核科技和狠活【AI开发的大杀器】【建议收藏】
DeepSeek自从1月20号上线并开源了DeepSeek R1火爆出圈后,就一直吸引着国内、国外各界的目光,这次的开源周[2.24-3.1]更是把全民DeepSeek的热度推向了一个新的高度,每天解锁硬技能,都给大家带来了各种惊艳感。截止今天,开源周已全部结束,本文就和大家一起回顾开源周的那些硬核科技和狠活!原创 2025-03-03 16:38:34 · 1692 阅读 · 0 评论 -
【手把手教会】WPS深度集成DeepSeek使用指南,让办公效率起飞【附详细图文】【建议收藏】
本文将为大家一步一步详细介绍如何使用WPS深度集成DeepSeek的丰富功能,无需配置、无需付费,开箱即用,让办公效率提升。让我们一起来看看如何操作吧!原创 2025-02-27 17:59:09 · 2646 阅读 · 0 评论 -
一文搞明白DeepSeek【满血版】和【贫血版】差异,以及【X86架构】和【C86架构】(搭配国产卡)服务器,硬件配置参数要求 [文末有福利]【建议收藏】
关于671B转译和量化过程中智商降低多少的问题,是一个开放性问题,转译和量化一定是跟原版的智商是有区别的,智商下降多少,取决于技术团队转译和量化时的取舍和操作,比如同样做Q4量化,一个大牛和一个菜鸟两个人量化出来的671B模型智商肯定差异很大,所以说转译满血版一定比量化满血版智商高,这个认知是错误的。第二选择是转换为BF16精度,用支持该精度的GPU来推理,精度几乎无损,但系统开销会增大,推理效率会降低。更差的选择,是把满血模型量化为int8甚至int4的残血版,虽然推理效率很高,但是模型精度会大大损失。原创 2025-02-27 10:50:42 · 11039 阅读 · 0 评论 -
一文全面解读DeepSeek----技术、应用、性能、部署及趋势
一文全面解读DeepSeek,从技术原理到行业应用,从性能基准到部署方案,从生态合作到应用建议,全方位解读deepSeek原创 2025-02-20 10:56:28 · 1837 阅读 · 0 评论 -
一文搞明白DeepSeek超高幻觉率及解决思路【4000+字】【小白也能看懂学会】【含实用操作指南】
如果把R1的能力分成“文科”和“理科”来看,它在数学、代码这些“理科”方面,逻辑性很强,幻觉相对少。但你看,让它做个摘要,本来是很简单的任务,但它非得给你“发挥”一下,结果就容易“编”出一些原文里没有的东西。在训练阶段,团队对文科类任务(如小说创作)的评判标准更偏向“新颖性”而非“真实性”,导致模型将“合理编造”视为优质输出的关键。中国古人说的“信达雅”,自古难全。具体来说,当大语言模型在回答用户问题时,如果生成的内容与用户问题的实际需求不符,或者生成了错误的信息,这些情况都可以被视为幻觉。原创 2025-02-20 15:50:46 · 5978 阅读 · 0 评论 -
一文深度解析DeepSeek:【技术原理+开发实践+行业应用】【为啥DeepSeek能火爆出圈】【9000+字】
MLA、MoE、MTP 三者结合,使 DeepSeek 既具备超⼤模型容量(因 MoE 稀疏扩张)和⾼训练效率(因 MLA、MTP ),⼜能在⻓序列或复杂推理中保持性能不衰减。不过趁着DeepSeek这个热度,不同的厂商有着不同的考量:有人卷模型上架,算力适配,主卖铲子;这套全栈式创新为 DeepSeek‐R1、V3 等系列模型的成功提供了坚实⽀撑,使其在与 GPT-4 等巨型闭源模型的竞争中,依靠“创新”⽽⾮“单纯的⾼算⼒投⼊”赢得了⼀席之地,也为后续更多开源⼤模型的研发指明了⼀条可⾏的⾼性价⽐道路。原创 2025-02-21 18:37:48 · 2672 阅读 · 0 评论