
计算机视觉
文章平均质量分 72
AI智博信息
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
DDIPNET和DDIPNET+:遥感图像分类的判别深度图像先验网络
遥感图像分类研究对城市规划和农业等基本人类日常任务产生了重大影响。如今,技术的快速进步和许多高质量遥感图像的可用性创造了对可靠自动化方法的需求。目前的论文提出了两种新颖的基于深度学习的图像分类架构,即判别深度图像先验网络和判别深度图像先验网络+,它们结合了深度图像先验和三重网络学习策略。在三个著名的公共遥感图像数据集上进行的实验取得了最先进的结果,证明了使用深度图像先验进行遥感图像分类的有效性。翻译 2024-09-18 23:44:27 · 145 阅读 · 0 评论 -
DA2Net:用于鲁棒遥感图像场景分类的注意力驱动对抗网络
光学遥感图像(RSI)容易受到天气条件的影响。当地面目标被云遮挡时,从RSI中提取场景信息变得非常具有挑战性。在这项工作中,我们提出了一种分散注意力驱动的对抗训练网络(DA2Net)来学习鲁棒的RSI场景分类模型。分心模块采用基于梯度的类激活映射(GradCAM++)方法来产生部分被遮挡的样本。通过特征图可视化,GradCAM++可以量化每个区域对网络预测的贡献。如果相应的贡献高于给定阈值,则输入图像中的区域将被擦除并用白色像素填充。这样,分心模块丰富了训练样本的多样性,有利于网络的鲁棒性和泛化性能。翻译 2024-09-18 23:42:15 · 166 阅读 · 0 评论 -
基于互补学习的含噪声标签遥感图像场景分类
最近,许多基于深度卷积神经网络(DCNN)的方法被提出用于遥感(RS)图像场景分类(SC)。一般来说,DCNN在标签正确的情况下获得了良好的泛化能力。不幸的是,给定的样本有时会被错误标记。在这封信中,研究了带有噪声标签的RS图像的分类。首先,引入互补学习(CL),它从互补标签而不是原始标签中学习,用于带有噪声标签的RS图像分类。CL可以降低从错误信息中学习的概率,因此,它对噪声标签具有鲁棒性。然后,提出了随机干扰训练样本的互补标签的软CL,以防止在训练DCNN时出现过拟合问题。翻译 2024-09-17 23:03:31 · 222 阅读 · 0 评论 -
结合多级特征进行遥感图像场景分类与注意力模型
遥感(RS)图像场景分类由于其类内多样性和类间相似性而成为一项具有挑战性的任务。最近,许多基于卷积神经网络(CNN)的方法都在探索网络来处理这项任务。然而,RS图像除了相关对象外通常还有令人困惑的背景,仅从整个RS图像中提取的特征不能达到令人满意的结果。为了解决这个问题,这封信提出了一种利用注意力网络定位RS场景图像的多尺度判别区域并通过分类网络结合从局部区域学习的特征的方法。具体来说,分类网络由三个子网络组成,它们分别由一定的缩放区域进行训练。翻译 2024-09-17 23:01:45 · 168 阅读 · 0 评论 -
遥感图像跨域半监督分类的分类器约束深度对抗域自适应
这封信提出了一种分类器约束的深度对抗域自适应(CDADA)方法,用于遥感(RS)图像中的跨域半监督分类。深度卷积神经网络(DCNN)用于构建特征表示,以在适应过程之前描述场景的语义内容。然后,对抗域自适应用于对齐源和目标的特征分布。具体来说,使用两个不同的土地覆盖分类器作为判别器来考虑类别之间的土地覆盖决策边界,并增加它们的距离以将它们与原始土地覆盖类别边界分开。然后,生成器在分类器约束下创建远离原始土地覆盖类别边界的稳健可转移特征。翻译 2024-09-16 23:06:20 · 217 阅读 · 0 评论 -
基于深度学习架构的遥感应用高光谱图像分类
土地利用和土地覆盖在自然资源管理中起着至关重要的作用。它用于绘制环境变化图以进行生态系统监测。自动测绘可以为农业、城市管理和林业带来许多价值。深度学习技术的进步在图像分类领域取得了显著成果,主要应用于遥感领域。本文提出了基于深度学习技术的土地覆盖分类。它由具有编码器和解码器阶段的U-Net架构组成。编码器通过利用卷积层来实现语义表示。解码器部分借助跳跃连接恢复空间信息。所提出的方法与最先进的方法进行了比较,并产生了81.23%的土地覆盖数据集。翻译 2024-09-16 23:02:44 · 265 阅读 · 0 评论 -
C2 CapsViT:用于遥感图像场景分类的跨上下文和跨尺度胶囊视觉变换器
准确解释图像内容在许多地球观测任务中起着至关重要的作用。这封信构建了一种新颖的跨上下文和跨尺度胶囊视觉转换器(C2-CapsViT)架构,用于遥感图像场景分类。首先,采用多上下文补丁嵌入策略,大大提高了令牌表示质量,以编码不同上下文的特征语义。其次,采用多尺度变换器块设计,同时利用不同粒度的远程全局特征交互和不同类型的特征自注意力来提高特征编码质量。此外,通过结合卷积和变换器结构,局部和全局特征语义被有效地融合以指导准确的预测。C2-CapsViT在三个场景分类数据集上进行了精心验证。翻译 2024-09-15 23:39:33 · 165 阅读 · 0 评论 -
BigEarthNet MM:一个用于遥感图像分类和检索的大规模、多模式、多标签基准档案
该文章介绍了多模式BigEarthNet(BigEarthNet-MM)基准存档,包括590,326对Sentinel-1和Sentinel-2图像补丁,用于支持多模态、多标签遥感(RS)图像检索和分类中的深度学习(DL)研究。BigEarthNet-MM中的每一对补丁都使用2018年CORINE土地覆盖(CLC)地图提供的多标签进行注释,该地图基于其主题上最详细的3级类别命名法。我们的初步研究表明,某些CLC类很难通过仅考虑(单一日期)BigEarthNet-MM图像来准确描述。翻译 2024-09-15 23:37:54 · 651 阅读 · 0 评论 -
用于遥感图像场景分类的带宽多尺度CNN架构
图像场景分类问题框架中的大多数现有卷积神经网络(CNN)架构都是为对RGB图像波段进行建模而设计的。将这些架构直接应用于高维遥感(RS)场景分类可能不足以准确描述光谱内容。为了解决这个问题,我们提出了一种新颖的CNN架构,用于高维RS图像的特征嵌入。所提出的架构旨在:1)将光谱和空间特征提取解耦,以充分描述图像的复杂信息内容;2)利用图像中存在的不同土地利用和土地覆盖类别的多尺度表示。为此,所提出的架构主要由:1)卷积层,用于按带宽提取多尺度空间特征;2)一个卷积层,用于按像素提取光谱特征;翻译 2024-09-14 23:55:40 · 156 阅读 · 0 评论 -
通过遥感图像自动确定、特征提取和分类潮汐过程:初步研究
与河流不同,潮汐路径呈现出不同的排水方式复杂分布中的配置。确定它们的特征是对它们的进化建模的第一步。在这项工作中,提出了一种方法,用于在高分辨率卫星图像(IKONOS,1m分辨率)上自动提取和表征潮汐路径。该算法准确地计算结构的总长度。此外,它还通过超分辨率识别和表征每个分支。然后,对没有环路的排水路径进行分类,定义它们受潮汐影响的洪水和退潮的顺序。该方法在两条具有非常不同特征的潮汐路径上进行了测试:矩形或格状排水系统和树枝状排水系统。翻译 2024-09-14 23:54:13 · 237 阅读 · 0 评论 -
基于深度卷积神经网络的高光谱遥感图像分类特征提取方法的评价与影响
HSI(高光谱图像)由更多的光谱带组成,用于地球上各种物体的分类。然而,这些大量的光谱带具有冗余信息并降低了分类精度。为了有效地执行分类,应用了降维方法。PCA是用于具有大量维度的数据的常用特征缩减技术。本研究工作提出了维度的PCA和因子分析实施时,从PCA和因子分析中提取的HSI数据的特征进行比较。此外,CNN(卷积神经网络)在减少特征以分离HSI数据后具有各种卷积层、池化层和全连接层。翻译 2024-09-13 23:48:43 · 271 阅读 · 0 评论 -
基于D波量子退火器的支持向量机集成遥感图像分类方法研究
支持向量机(SVM)是一种流行的监督机器学习(ML)方法,广泛用于分类和回归问题。最近,提出了一种在aD-Wav2000QQuantumAnnalr(QA)上训练SVM的方法,用于对一些生物数据进行二元分类。首先,通过在可以适合QA的不相交训练子集上训练每个分类器来生成弱量子SVM的集合。然后,融合计算出的弱解,以对看不见的数据进行预测。在这项工作中,讨论了具有在QA上训练的SVM的遥感(RS)多光谱图像的分类。此外,还发布了一个开放代码存储库,以促进早期进入QA(一种新的颠覆性计算技术)的实际应用。翻译 2024-09-13 23:46:42 · 216 阅读 · 0 评论 -
以支持向量机为核心的遥感图像分类方法综述
为了更好地进行遥感(RS)图像分类,近年来在遥感图像分类领域提出了多种方法。一般来说,RS图像分类方法有两类:基于像素(PB)的方法和基于对象(OB)的方法。本文从PB方法和OB方法的角度对RS图像分类方法进行了综述,特别是对一种有前途的RS图像分类方法支持向量机(SVM)的发展和特点进行了综述。SVM在RS领域特别受欢迎,因为它可以处理小规模的训练数据集,并提供比一些传统方法(如最大似然分类器)更高的分类精度。此外,SVM还具有优势和强泛化。然而,基于SVM的方法也存在一些问题。翻译 2024-09-12 22:43:00 · 282 阅读 · 0 评论 -
基于对抗学习的开放集域自适应网络在遥感图像场景分类中的应用
遥感影像场景分类是指为遥感影像分配特定的语义标签。由于缺乏标记的遥感图像,因此将域自适应应用于遥感图像场景分类。然而,最近提出的方法主要集中在闭集场景上。在本文中,我们探索了开放集场景并引入了开放集域适应网络(OSDANet)用于遥感图像场景分类。受生成对抗网络(GAN)思想的启发,我们设计了一个以对抗方式学习的特征生成器和分类器。分类器的目的是找到源样本和目标样本之间的边界,而特征生成器试图迫使目标样本远离边界。特别是对于目标样本,特征生成器将决定是将它们与源样本对齐还是将它们作为未知目标样本拒绝。翻译 2024-09-12 22:40:23 · 178 阅读 · 0 评论 -
遥感场景图像分类的深域自适应网络评价
高性能深度神经网络的分类方式依赖于大规模和高质量的标记样本。然而,在遥感影像领域很难获得大量高质量的数据集。最常见的解决方案是使用微调的预训练神经网络来学习,这反而带来了数据偏差。同时,不同时相的遥感影像也会发生变化。它导致违反训练和测试数据之间的假设。在本文中,我们将四种深度自适应网络应用于遥感图像迁移和分类实验,并对遥感图像分类的深度域自适应进行了实验评估。首先选取两组公共遥感光学场景分类数据,将两组数据在上述四个网络中进行对比,得到不同网络结构下的传递精度,然后对比分析不同类别的分类精度。翻译 2024-09-11 22:30:50 · 201 阅读 · 0 评论 -
高光谱遥感图像子空间检测与分类分析
高光谱图像分类是一项具有挑战性的任务,因为它包含大量数据,并且所需的光谱特征并不总是可用。因此,分类过程面临维度灾难问题。然而,它在成功分类后的许多应用中非常有用,因为它包含许多关于地面物体的有用信息。这种复杂性可以通过在图像分类之前减少不相关的特征来克服。从大型输入数据集中,可以通过主成分分析(PCA)提取所需的信息。因此,针对上述问题,本文采用PCA来降低输入维数并提高分类精度。为了评估所提出方法的有效性,使用了真实的高光谱数据,并且该数据也用于进行实验分析。翻译 2024-09-11 22:29:23 · 161 阅读 · 0 评论 -
基于深度学习的遥感图像飞机类型分类
在航空领域,数据的冗余性很强希望做出最优决策。随着遥感影像所用技术的发展,大量的数据源可用。遥感图像分类(RSIC)广泛应用于军事和民用领域。为了提高多标签分类的性能,我们解决了基于卷积神经网络(CNN)的RSIC用于飞机类型遥感图像的问题。以前的研究使用了密集的预处理,这限制了分类率。我们改进了网络结构,使其更准确,并限制欠拟合或过拟合问题。在这项工作中使用了一个最近称为多型飞机遥感图像(MTARSI)的公共数据集来验证我们的方法。大量实验证明了所提出方法在准确性方面的有效性。翻译 2024-09-10 22:45:42 · 347 阅读 · 0 评论 -
基于标签融合的半监督暹罗网络用于遥感图像场景分类
遥感影像场景分类需要大量的标注数据,在一系列领域发挥着至关重要的作用。然而,在实际复杂的环境中,由于数据的扰动和人工标注的成本,得到的遥感影像有时会出现未标注的情况,这限制了训练效果和泛化能力。针对这一问题,提出了一种基于标签融合的半监督siamese网络用于遥感图像场景分类。建立siamese网络用于从遥感图像中提取特征,构建基于低熵原理的损失函数选择未标记的数据作为伪标签样本。混合标记和伪标记样本以进一步训练孪生网络。翻译 2024-09-10 22:43:11 · 91 阅读 · 0 评论 -
用于遥感图像场景分类的场景图像多样性改进生成对抗网络
为了实现良好的遥感图像场景分类,深度学习模型在训练阶段通常需要大量样本。不幸的是,收集大量的训练场景图像通常涉及大量的采集和处理成本。相比之下,在训练生成对抗网络(GAN)之后,场景样本随后可以由生成器以低成本自动生成。然后,可以将生成的图像添加到训练集中。当这些样本包含比原始真实图像更多样化的场景结构和基本特征时,将获得具有更好分类能力的模型。在这封信中,我们提出了场景图像多样性改进GAN(diversity-GAN)。Diversity-GAN有两个重要的优势。翻译 2024-09-09 22:15:14 · 147 阅读 · 0 评论 -
一种用于鲁棒遥感图像分类的新型监督级联分类器系统(SC2S)
分类是量化和挖掘高光谱图像中丰富信息的广泛使用的技术之一。然而,可信分类的实现仍然是一项具有挑战性的任务。这是由于存在各种不确定性,例如对实际类数和噪声的先验知识不完整。尤其是光谱类别数与信息类别数的不匹配会导致分类中的大量遗漏或委托错误。在这封信中,我们提出了一个新的多类分类框架,称为监督级联分类器系统(SC2S),它通过提供可靠的结果来解决上述问题。SC2S方法是一个两阶段级联分类程序,涉及量化不确定性,然后对样本进行分类。在第一阶段,检测在训练阶段无法找到可靠训练样本的像素。翻译 2024-09-09 22:11:19 · 202 阅读 · 0 评论 -
一种用于遥感图像分类和回归的新型通用半监督深度学习框架
遥感图像分析通常涉及图像级分类和/或回归。遥感数据的一个主要问题是难以获得大量精确的人工注释来训练在计算机视觉方面取得巨大成功的全监督深度网络。因此,本文提出了一种新颖的通用半监督框架(GSF),它只需要少量带注释的样本进行训练。它采用新的混合(不)相似性来表征图像的不同方面,并在微调深度神经网络(NN)的同时实现标签传播。如实验结果所示,GSF在分类和回归方面优于几个监督基线和最先进的半监督模型。翻译 2024-09-08 22:57:39 · 185 阅读 · 0 评论 -
VGG-16遥感图像分类的轻量级模型
行星科学是一项重要的基础工作。从行星遥感海量数据中识别和分类地形地貌特征。因此,本文提出了一种基于VGG-16的轻量级模型,可以选择性地提取遥感图像的一些特征,去除冗余信息,并对遥感图像进行识别和分类。该模型既保证了精度,又减少了模型的参数。根据我们的实验结果,我们的模型在遥感图像分类上有很大的提高,从原来的85%到现在的98%。同时,该模型在收敛速度和分类性能上有很大的提升。翻译 2024-09-08 22:55:54 · 268 阅读 · 0 评论 -
一种用于遥感图像场景分类的轻量级多尺度网络
遥感图像(RSI)场景分类在许多应用领域发挥着积极作用。由于卷积神经网络(CNN)的优异性能,近年来在RSI场景分类中得到了广泛的应用。然而,大多数现有方法通过改进模型参数或融合CNN的特征来提高分类精度。这将使整个模型变得非常复杂,无法在更细粒度的层次上提取多尺度特征。这封信提出了一种新颖的、轻量级的多尺度深度网络(MSDWNet),具有高效的空间金字塔注意力(ESPA),即ESPA-MSDWNet,在解决这个问题时模型参数低,精度高。ESPA-MSDWNet使用MobileNetV2作为主干。翻译 2024-09-07 22:46:34 · 160 阅读 · 0 评论 -
一种用于高分辨率遥感图像陆地覆盖分类的轻量级多尺度CNN模型
准确及时的土地覆盖信息在土地资源管理和城市规划中发挥着重要作用。在本文中,提出了一种用于高分辨率遥感图像分类的轻量级多尺度卷积神经网络模型。它的输入是多尺度斑块,用于捕捉高分辨率遥感图像中空间特征的多尺度变化。在这个模型中,一些标准的卷积被深度可分离卷积代替,它的参数更少,需要的计算成本也更少。实验是在两个不同地区(即中国北京和青岛)的高分辨率图像上进行的。良好的性能验证了所提出的方法对于高分辨率遥感图像的分类非常有效。翻译 2024-09-07 22:43:37 · 114 阅读 · 0 评论 -
噪声多标签下遥感图像分类的共识协作学习方法
在多标签分类框架中收集大量可靠的训练图像,这些训练图像由多个土地覆盖类标签标注,在遥感(RS)中是耗时且昂贵的。为了解决这个问题,公开可用的主题产品通常用于以零标记成本对RS图像进行注释。然而,这种方法可能会导致构建带有噪声多标签的训练集,从而扭曲学习过程。为了解决这个问题,我们提出了一种共识协作多标签学习(CCML)方法。所提出的CCML通过四个主要模块识别、排序和校正具有噪声多标签的训练图像:1)差异模块;2)组套索模块;3)翻转模块;4)交换模块。翻译 2024-09-06 22:23:39 · 158 阅读 · 0 评论 -
多标签遥感图像分类中深度学习损失函数的比较研究
本文在多标签遥感(RS)图像场景分类问题的框架下分析比较了不同的深度学习损失函数。我们考虑七个损失函数:1)交叉熵损失;2)焦点损失;3)加权交叉熵损失;4)汉明损失;5)Huber损失;6)排名损失;7)spaseMax损失。在RS中首次分析了所有考虑的损失函数。在理论分析之后,进行实验分析以比较所考虑的损失函数:1)整体精度;2)类别不平衡意识(与每个类别相关的样本数量显着变化);3)凸性和可微性;4)学习效率(即收敛速度)。翻译 2024-09-06 22:21:27 · 203 阅读 · 0 评论 -
通过联合学习以图像形式解释遥测参数
飞行过程中遥测参数的自动解读,可以帮助随时监控飞行器的状态。然而,由于缺乏历史数据,有效的解释非常困难。在本文中,我们提出了一种通过联邦学习(FL)以图像形式解释遥测参数的方法。首先,为了模拟人眼的解释,将遥测数据转换为图像形式进行特征提取。然后,图像相关数据集用于模型预训练。最后调用FL将多个机构的数据进行整合,共同训练得到精度更高的模型。实验表明,本文提出的方法可以有效提高解释的准确性,降低损失。翻译 2024-09-05 22:04:46 · 101 阅读 · 0 评论 -
SplitAVG:一种用于医学成像的异构感知联邦深度学习方法
在这项研究中,我们提出了一种新颖的异质性感知联邦学习方法SplitAVG,以克服联邦学习中数据异质性导致的性能下降。与以前需要复杂启发式训练或超参数调整的联邦方法不同,我们的SplitAVG利用简单的网络拆分和特征图连接策略来鼓励联邦模型训练目标数据分布的无偏估计。我们将SplitAVG与七种最先进的联合学习方法进行比较,使用集中托管的训练数据作为一套合成和真实世界联合数据集的基线。我们发现,使用所有比较联邦学习方法训练的模型的性能随着数据异质性程度的增加而显着下降。翻译 2024-09-05 22:01:32 · 127 阅读 · 0 评论 -
利用联合学习改进基于深度学习的磁共振图像重建的多机构合作
快速准确的磁共振重建来自欠采样数据的(MR)图像在许多临床应用中都很重要。近年来,基于深度学习的方法已被证明可以在MR图像重建上产生卓越的性能。然而,这些方法需要大量的数据,由于获取成本高和医疗数据隐私法规的原因,这些数据难以收集和共享。为了克服这一挑战,我们提出了一种基于联邦学习(FL)的解决方案,在该解决方案中,我们利用了不同机构可用的MR数据,同时保护了患者的隐私。翻译 2024-09-04 22:01:11 · 137 阅读 · 0 评论 -
通过联合学习、深度学习、差分隐私和加密计算维护医学成像中的隐私
由于医疗数据隐私法规,目前用于算法训练和评估的数据集的可用性受到阻碍。由于缺乏结构化的电子病历和严格的法律标准,患者数据很难在整合的数据湖中收集和共享。对于训练算法,例如卷积神经网络,这会带来困难,通常需要大量的训练示例。为了避免在鼓励对旨在加强患者护理的广泛数据集进行临床研究时损害患者隐私,必须采用技术解决方案同时满足数据安全和使用标准。我们概述了用于安全和隐私保护的人工智能的当前和尖端技术,重点介绍了医学成像应用和潜在机会。翻译 2024-09-04 21:58:43 · 239 阅读 · 0 评论 -
肺炎图像分类的联合学习策略研究
深度学习已经成为一种很有前途的方法,可以在医疗保健领域建立准确和健壮的模型。本文探讨了使用X射线图像进行肺炎分类的联合学习策略,并分析了它如何解决隐私问题。联邦训练的性能经过比较,证明与传统的集中训练方法相当。三种聚合技术,即联合平均(FedAvg)、坐标中位数(COMED)和几何中位数(GEOMED)已针对两种实际场景实施和分析。事实证明,与FedAvg相比,COMED和GEOMED对异常值的存在更具弹性。提出了层混洗协议,用于在共享模型权重的同时实现数据加密。翻译 2024-09-03 23:38:50 · 114 阅读 · 0 评论 -
使用图像增强提高非IID环境中基于联合学习的医学图像分析的性能
联邦学习(FL)是一个合适的解决方案使用属于必须在严格的隐私约束下工作的患者、人员、公司或行业的敏感数据。FL主要或部分支持数据隐私和安全问题,并为模型问题提供了一种替代方案,便于多个边缘设备或组织使用大量本地数据进行全局模型的训练,而无需它们。FL的非IID数据由其分布引起退化和稳定偏差。本文介绍了一种通过增强图像来动态平衡客户端数据分布的新方法,以解决FL的非IID数据问题。翻译 2024-09-03 23:36:45 · 105 阅读 · 0 评论 -
遵循FAIR原则的大成像数据管道在肿瘤学联合机器学习中的实现
癌症是一种致命疾病,也是全球主要死因之一。癌症治疗的治愈率仍然很低;因此,癌症治疗正逐渐转向个性化治疗。人工智能(AI)和放射组学已被公认为肿瘤学个性化医疗的潜在研究领域之一。一些研究人员已经确定了人工智能和放射组学表征表型的能力,并通过预测肿瘤学治疗的结果。尽管人工智能和放射组学在肿瘤诊断和治疗方面已显示出可喜的初步成果,但这些技术也面临着标准化和可扩展性的挑战。在过去几年中,研究人员一直在尝试开发一种用于联合机器学习的研究基础设施,以提高大数据在临床研究中的可用性。翻译 2024-09-02 23:18:08 · 154 阅读 · 0 评论 -
FEDSLD:用于医学图像分类的共享标签分布联合学习
联邦学习(FL)可以协作训练多个医疗中心的联合模型,同时由于隐私问题而保持数据分散。然而,联合优化经常受到跨医疗中心数据分布的异质性的影响。在这项工作中,我们提出了用于分类任务的具有共享标签分布的联邦学习(FedSLD),该方法通过了解客户的标签分布来调整每个数据样本对本地目标的贡献,从而减轻数据异质性带来的不稳定性.我们对具有不同类型的非IID数据分布的四个公开可用的图像数据集进行了广泛的实验。我们的结果表明,FedSLD比比较领先的FL优化算法实现了更好的收敛性能,将测试精度提高了5.50个百分点。翻译 2024-09-02 23:15:47 · 147 阅读 · 0 评论 -
FEDNS:改进移动客户端协同图像分类的联邦学习
联邦学习(FL)是一种范式,旨在支持松散连接的客户端在中央服务器的帮助下协作学习全局模型。最流行的FL算法是联合平均(FedAvg),它基于对客户端模型进行加权平均,权重主要取决于客户端的数据集大小。在本文中,我们提出了一种新方法,称为联合节点选择(FedNS,用于FL设置中的服务器全局模型聚合。FedNS在节点内核级别过滤和重新加权客户端的模型,从而通过融合客户端的最佳组件来产生可能更好的全局模型。以协作图像分类为例,我们通过来自多个数据集和网络的实验表明,FedNS可以持续提高FedAvg的性能。翻译 2024-09-01 23:54:44 · 99 阅读 · 0 评论 -
利用联合学习构建去中心化图像分类器
数据隐私问题极大地限制了神经网络的商业使用。只要私人数据的积累和使用被认为是将神经网络集成到产品中的必要条件,消费者将不愿意使用或允许访问任何深度学习集成产品,生产商也将同样不愿意利用深度学习来提高性能。联邦学习最初是在谷歌2016年发表的一篇题为《从去中心化数据中高效学习深度网络的通信》的论文中提出的,作为解决这一难题的一种方法。在这项研究中,我们研究了分散式图像分类器与集中式图像分类器的性能如何比较。将跨十个设备训练的图像分类器的性能与使用相同架构构建但在一个训练数据集上集中训练的模型进行了比较。翻译 2024-09-01 23:52:41 · 116 阅读 · 0 评论 -
3D脑MRI图像的联合深度学习框架
深度学习在多种应用中显示出独特的优势。但是,3D脑部MRI扫描等医学影像数据包含受试者的私人信息,未经特殊许可不得共享和使用。这使得对来自多个站点的医学图像进行聚合分析变得困难。联邦学习提供了一种在不传输原始数据的情况下聚合来自不同站点的学习特征的方法,从而确保主题信息的安全性。传统的联邦学习算法如FEDAVG已被证明是有效的,但由于跨站点的高数据异构性,性能总是很差。此外,很少有人探索3D医学图像的联合学习。在这里,我们提出了一个用于多站点3D大脑MRI图像的引导加权联合深度学习框架。翻译 2024-08-31 22:19:33 · 129 阅读 · 0 评论 -
一种用于联邦大医学图像分析的分布式深度学习框架
大数据在医学图像分析中的使用再次证明通过产生更高的诊断准确性和改进的神经网络性能来推动该领域的发展。这也导致使用更大的神经网络并增加共享敏感医疗数据信息的安全风险。在本文中,通过使用联邦学习和模型压缩框架降低计算成本,对管道进行了理论化,以安全地促进医学图像分析。翻译 2024-08-31 22:17:06 · 134 阅读 · 0 评论 -
一文了解图像处理、图像分析和图像理解
三者之间的联系:图像处理是⽐较低层的操作,它主要在图像像素级上进⾏处理,处理的数据量⾮常⼤。狭义的图像处理主要是对图像进⾏各种加⼯,以改变图像的视觉效果并为⾃动识别奠定基础,或对图像进⾏压缩编码以减少所需存储空间。图像理解:重点是在图像分析的基础上,进⼀步研究图像中各⽬标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从⽽指导和规划⾏动。图像分析:对图像中感兴趣的⽬标进⾏检测和测量,以获得他们的客观信息,从⽽建⽴对图像的描述。原创 2024-07-21 10:03:37 · 1299 阅读 · 1 评论