1、原文
A Scene Images Diversity Improvement Generative Adversarial Network for Remote Sensing Image Scene Classification.
http://ieeexplore.ieee.org/document/8915710/
2、摘要
为了实现良好的遥感图像场景分类,深度学习模型在训练阶段通常需要大量样本。不幸的是,收集大量的训练场景图像通常涉及大量的采集和处理成本。相比之下,在训练生成对抗网络(GAN)之后,场景样本随后可以由生成器以低成本自动生成。然后,可以将生成的图像添加到训练集中。当这些样本包含比原始真实图像更多样化的场景结构和基本特征时,将获得具有更好分类能力的模型。在这封信中,我们提出了场景图像多样性改进GAN(diversity-GAN)。Diversity-GAN有两个重要的优势。1)训练过程以渐进方式设计:GAN的生成器和判别器从粗分辨率场景图像进展到细分辨率场景图像。该特性可以保证生成样本的多样性。特别是,它保证了生成的场景图像结构的多样性。2)训练进度可控:通过引入控制参数,diversity-GAN可以直接确定训练过程应该关注的场景图像分辨率。这一特性允许diversityGAN通过几次迭代在粗分辨率训练阶段实现场景图像结构的多样性。在实验中,引入了UC-Merced和AID数据集。结果表明,diversity-GAN生成的样本可以有效提高样本集的多样性,这些生成的样本可以在训练阶段赋予卷积神经网络(CNNs)更好的分类能力。
3、正文
-------------------------------------------------------------------------------
--------------------------------------------------------------------------------
------------------------------------------------------------------------------
--------------------------------------------------------------------------------
4、结论
在训练遥感图像场景分类的深度模型时,组装一个训练数据集,反映场景的各种结构和基本特征非常重要。在这封信中,我们提出了diversity-GAN,其训练过程机制以渐进可控的方式设计;这种机制使得diversity-GAN很容易在生成的图像中实现结构多样性。实验结果表明,diversity-GAN可以生成大量表现出更大多样性的场景图像,并且可以提高整体分类精度。结果表明,通过diversity-GAN生成的样本,可以快速自动化地获取更多样本,为训练更复杂的神经网络模型,提高遥感场景分类精度奠定基础。