1、原文
A Novel Supervised Cascaded Classifier System (SC2S) for Robust Remote Sensing Image Classification.
https://ieeexplore.ieee.org/document/9043509
2、摘要
分类是量化和挖掘高光谱图像中丰富信息的广泛使用的技术之一。然而,可信分类的实现仍然是一项具有挑战性的任务。这是由于存在各种不确定性,例如对实际类数和噪声的先验知识不完整。尤其是光谱类别数与信息类别数的不匹配会导致分类中的大量遗漏或委托错误。在这封信中,我们提出了一个新的多类分类框架,称为监督级联分类器系统(SC2S),它通过提供可靠的结果来解决上述问题。SC2S方法是一个两阶段级联分类程序,涉及量化不确定性,然后对样本进行分类。在第一阶段,检测在训练阶段无法找到可靠训练样本的像素。在第二阶段,使用监督学习算法对与相应训练分布匹配的像素进行分类,否则标记为未知。提议的SC2S框架已在八种不同的分类场景中实施,这些场景使用高光谱和多光谱图像具有不同数量的未知类别(UC)。将所提出的SC2S方法的性能与其他广泛使用的带有和不带有拒绝选项的分类器进行比较。实验结果表明,即使在具有大量未知光谱类别的数据集的情况下,我们的方法也能提供出色的分类结果。
3、正文
----------------------------------------------------------------------------------
-----------------------------------------------------------------------------
--------------------------------------------------------------------------------
----------------------------------------------------------------------------------
4、结论
我们提出了一种新的分类算法,一种SC2S,用于在存在未知的情况下进行多类图像分类光谱类别。这封信评估了包含类标签以对与训练分布有显着偏差的异常实例进行分组的重要性和优势。SC2S与有和没有拒绝选项的分类器的性能比较表明,所提出的方法在提供可信的分类结果方面是有效的,并且错误率显着降低。提出的SC2S方法在遥感图像分类中具有潜在的应用,尽管存在大量UC,但要从中检索较少的用户所需信息类。