高斯混合模型原理及Python实践

高斯混合模型(Gaussian Mixture Model,简称GMM)是一种统计学中的概率模型,用于表示由多个高斯分布(正态分布)混合组成的数据集合。其核心原理基于假设数据集中的每个数据点都是由多个潜在的高斯分布之一生成的,这些高斯分布的参数(如均值和方差)以及它们的权重(每个分布的贡献程度)是需要通过模型学习和估计的。

一、原理概述

1. 高斯分布假设:

高斯混合模型认为数据集中的数据是由多个高斯分布混合而成的。每个高斯分布都代表数据中的一个潜在群体或簇,具有自己的均值(表示群体的中心位置)和方差(表示群体的分散程度)。

2. 混合权重:

每个高斯分布在混合模型中的贡献程度由其混合权重决定。所有高斯分布的混合权重之和为1,表示每个数据点由这些高斯分布按一定权重组合生成的概率和为1。

3. 概率密度函数:

高斯混合模型的概率密度函数是多个高斯分布概率密度函数的加权和。给定一个数据点,模型可以计算其由每个高斯分布生成的概率,并根据混合权重计算其总的生成概率。

二、学习过程

高斯混合模型的学习过程通常通过期望最大化(Expectation-Maximization,EM)算法来实现,该算法是一种迭代优化算法,用于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值