扩散模型:训练

分阶段训练深度学习模型

训练扩散模型通常分为几个关键阶段:

  1. 数据收集与预处理:准备数据集,确保它们适合训练。
  2. 正向扩散数据生成:每次迭代生成数据,以供训练使用。
  3. 训练步骤:通过计算误差并优化网络,逐渐提高模型性能。
  4. 验证与检查点:定期验证模型效果,并保存检查点。
  5. 训练后应用:完成训练后,推论流程,包括抽样、可能的引导,以及调优。
  6. 部署阶段:模型打包、加速技术(如DDIM、PLMS)和运行时设置。
  7. 应用场景:可以通过API或命令行接口实现推断,并定义控制条件。

下面把 “训练扩散模型”“训练完怎么用” 拆成两大阶段 → 再细分若干小步。只要按次序走,就能从一批干净数据得到一台可以生成图片(或别的模态)的扩散模型。


阶段 A:离线训练(offline training)

步骤 这步具体做什么 备注 / 常见实现
A-0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值