分阶段训练深度学习模型
训练扩散模型通常分为几个关键阶段:
- 数据收集与预处理:准备数据集,确保它们适合训练。
- 正向扩散数据生成:每次迭代生成数据,以供训练使用。
- 训练步骤:通过计算误差并优化网络,逐渐提高模型性能。
- 验证与检查点:定期验证模型效果,并保存检查点。
- 训练后应用:完成训练后,推论流程,包括抽样、可能的引导,以及调优。
- 部署阶段:模型打包、加速技术(如DDIM、PLMS)和运行时设置。
- 应用场景:可以通过API或命令行接口实现推断,并定义控制条件。
下面把 “训练扩散模型” 和 “训练完怎么用” 拆成两大阶段 → 再细分若干小步。只要按次序走,就能从一批干净数据得到一台可以生成图片(或别的模态)的扩散模型。
阶段 A:离线训练(offline training)
步骤 | 这步具体做什么 | 备注 / 常见实现 |
---|---|---|
A-0 |