
数学基础
文章平均质量分 89
在学习各部分内容时,遇到的纯数学问题除了放在各部分中,也会关联此分类
彬彬侠
人工智能算法(Python)工程师、后端(Java)工程师
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
什么是几何平均数
几何平均数(Geometric Mean) 是一组数据的平均值的一种计算方式,与算术平均数不同,它适用于表示一组具有乘法性质的数据。几何平均数是通过将数据点的乘积取 n 次方根(即数据点个数的倒数)来计算的。与算术平均数相比,几何平均数在计算时对极端值的敏感性较低,因此它在很多实际应用中比算术平均数更加稳健。它广泛应用于金融、统计、经济学、环境学等领域,特别是在处理百分比、比率等问题时。原创 2025-04-08 21:06:35 · 1549 阅读 · 0 评论 -
利普希茨连续(Lipschitz Continuity)
利普希茨连续性是数学分析中的一个重要概念,常用于描述函数的平滑性或稳定性。简单来说,利普希茨连续是一个比连续性要求更强的条件,它限制了函数值随自变量变化的速度。利普希茨连续性是描述函数变化速度有界的性质,它要求函数在任意两点之间的差异被一个常数所限制。函数的利普希茨常数L描述了函数变化的最大速率。均匀连续是利普希茨连续的一种特殊情况,利普希茨连续性比均匀连续性更强。原创 2025-02-02 16:57:29 · 2071 阅读 · 0 评论 -
数学中,什么是卷积
卷积是数学中一项非常重要的操作,它有着广泛的应用,包括信号处理、图像处理、概率论、神经网络等领域。卷积操作本质上是两个函数的加权和,其中一个函数被翻转和平移。卷积的性质,如交换律、结合律、分配律,使得它在很多数学问题中非常有用。通过卷积,我们能够有效地将局部信息聚合到全局信息中,在图像处理、语音识别等领域中取得了巨大的成功。原创 2025-01-20 18:43:51 · 2854 阅读 · 0 评论 -
什么是多项式函数
多项式函数(Polynomial Function)是一类在数学中非常基础且重要的函数,由有限个单项式的线性组合构成。它们在代数、分析、数论、几何等领域中都有广泛的应用。本文详细介绍多项式函数的定义、表示、性质以及常见例子。原创 2025-01-17 10:41:30 · 2646 阅读 · 0 评论 -
什么是可微
可微(Differentiable)是微积分中的一个基本概念,用于描述函数在某一点或某一区域内的光滑程度。一个函数在某点可微,意味着该函数在该点有确定的切线斜率,即函数在该点可以用线性函数很好地近似。可微性是研究函数性质、优化问题以及物理现象建模和机器学习的重要基础。原创 2025-01-16 11:05:55 · 6004 阅读 · 0 评论 -
什么是仿射变换
仿射变换(Affine Transformation)是一种几何变换,它是一组保持平直性和比例性的线性变换和平移的组合。简单来说,仿射变换会将直线映射为直线,保持线段之间的比例关系,但可能会改变图形的角度和大小。仿射变换广泛应用于计算机视觉、图像处理、深度学习等领域。例如,在图像旋转、缩放、平移、剪切等操作中,仿射变换是核心工具。原创 2025-01-13 21:36:33 · 3676 阅读 · 0 评论 -
什么是线性变换
线性变换(Linear Transformation)是一种数学变换,用于将一个向量空间中的向量映射到另一个向量空间,同时保持加法和标量乘法的性质。这是线性代数中的核心概念之一,在机器学习、深度学习和计算机图形学等领域具有重要应用。简单来说,线性变换可以通过矩阵乘法来表示,它的作用通常是对向量进行缩放、旋转或投影等操作原创 2025-01-13 21:30:43 · 2342 阅读 · 0 评论 -
什么是球坐标
球坐标系(Spherical Coordinate System)是三维空间中描述点位置的一种坐标系统,通过一个点到原点的距离以及两个角度来确定其位置。球坐标系在物理学、工程学、计算机图形学等领域有广泛的应用,特别适用于具有球面对称性的系统。原创 2024-12-25 16:09:23 · 4369 阅读 · 0 评论 -
什么是张量
张量(Tensor)是数学和物理学中的一个重要概念,用于描述多维数据和多线性关系。张量在工程、计算机科学、机器学习、物理学(特别是广义相对论)等多个领域中有广泛的应用。本文详细介绍了张量的定义、分类、表示方法、运算规则以及在各个领域中的应用。原创 2024-12-25 12:43:21 · 2538 阅读 · 0 评论 -
什么是多元正态分布
多元正态分布(Multivariate Normal Distribution)是多维空间中最常见的概率分布之一,是正态分布在高维空间中的推广。它是多维随机变量的联合分布,其中每个维度的边缘分布都是正态分布,并且各维之间具有一定的协方差关系。多元正态分布在统计学、机器学习、信号处理等领域中有着广泛的应用。原创 2024-12-21 18:30:29 · 1448 阅读 · 0 评论 -
什么是标准正态分布
标准正态分布(Standard Normal Distribution)是正态分布中的一种特殊情况,它的均值为0,方差为 1。标准正态分布是正态分布的标准化形式,是统计学和概率论中的一个重要分布。原创 2024-12-17 12:08:40 · 4903 阅读 · 0 评论 -
什么是概率密度函数
概率密度函数(Probability Density Function,PDF)是统计学和概率论中用于描述连续型随机变量概率分布的一种函数。它表示随机变量在某个值附近取值的可能性大小。原创 2024-12-16 17:15:12 · 1587 阅读 · 0 评论 -
什么是Jensen不等式
Jensen不等式是一个非常有用的不等式,它描述了凸函数和期望之间的关系。其核心内容是:对期望应用凸函数的结果总是小于或等于应用该函数后再取期望的结果。如果函数是凹的,则两者的关系是反过来的。原创 2024-11-30 18:24:26 · 3294 阅读 · 0 评论 -
什么是期望
期望(Expectation)是一个非常重要的数学概念,尤其在概率论和统计学中。期望值也叫数学期望或均值,它是一个随机变量取值的加权平均,权重由该随机变量的概率分布决定。原创 2024-11-30 12:35:47 · 4997 阅读 · 0 评论 -
Beta 函数与伽马函数的关系
详细解析了Beta函数与伽马函数的关系,并通过公式推导、性质总结和应用实例介绍了它们之间的联系与用法。原创 2024-11-24 19:15:39 · 1926 阅读 · 0 评论 -
什么是伽马函数
伽马函数 (Γ(x)) 是数学中非常重要的特殊函数,是阶乘函数在实数(甚至复数)范围内的扩展。它在概率论、统计学和许多数学领域中有广泛应用。原创 2024-11-24 18:58:02 · 6237 阅读 · 0 评论 -
什么是 Beta 分布
Beta分布 是一种定义在[0,1]区间上的概率分布,广泛应用于统计学和贝叶斯分析中,用于建模概率参数的分布(例如硬币正面出现的概率)。原创 2024-11-24 18:52:34 · 2214 阅读 · 0 评论 -
求和符号双变量∑x,y xy公式的理解
∑x,y xy 表示对所有x,y 组合的逐一求和,结果是这些组合的乘积的总和。理解这个公式的关键是搞清楚x,y 的取值范围(离散或连续)、它们的分布性质(独立或相关)以及是否有权重。原创 2024-11-22 16:13:03 · 2611 阅读 · 0 评论 -
什么是经验分布
经验分布是概率统计中的一个基本概念,用于描述从有限样本数据中估计的概率分布。它是一个基于数据的分布,用来近似未知的真实分布(通常称为“总体分布”)。经验分布直接反映了样本中事件发生的频率。原创 2024-11-20 23:04:34 · 3359 阅读 · 0 评论 -
什么是联合概率分布的经验分布和边缘概率分布的经验分布
联合概率分布的经验分布和边缘概率分布的经验分布是从实际数据中估计概率分布的一种方法。它们的基础是经验分布,即从有限样本数据中直接计算概率分布。原创 2024-11-20 23:01:41 · 1282 阅读 · 0 评论 -
什么是均匀分布
均匀分布是一种概率分布,用于描述在某个区间内,所有可能的取值出现的概率都相同的情况。这种分布分为离散型均匀分布和连续型均匀分布。原创 2024-11-20 18:07:01 · 2536 阅读 · 0 评论 -
什么是特征分布和经验分布
在概率统计和机器学习中,特征分布和经验分布是描述数据或模型行为的重要概念。特征分布指的是一个模型中特征的统计分布。它通常描述的是模型的输出分布中特征的期望值,具体与模型所定义的概率分布P(x,y)相关。经验分布是从数据中直接计算得出的分布,用于描述数据集中某些特征的统计规律。它反映了真实数据的分布情况,与模型无关。原创 2024-11-20 16:01:49 · 1073 阅读 · 0 评论 -
概率类型及其定义、公式和计算示例
本文系统地介绍了概率的类型,包括基本概率、复合概率、特殊概率及相关性质,并通过实际计算示例加深理解。概率可以被划分为多种类型,如联合概率、边缘概率、条件概率等。原创 2024-11-20 12:36:51 · 6029 阅读 · 0 评论 -
什么是定积分
定积分是用来计算函数在一定区间上的累积和的工具,常被用于求面积、体积、质量等累积量。数学上,定积分是微积分的核心概念之一。原创 2024-11-19 22:36:05 · 1620 阅读 · 0 评论 -
什么是概率分布
概率分布是用来描述随机变量可能取值及其对应概率的函数或规则。它反映了随机变量在不同取值上的概率分配情况。根据随机变量的类型,概率分布可以分为离散型概率分布和连续型概率分布。原创 2024-11-19 22:25:52 · 1406 阅读 · 0 评论 -
什么是共轭和共轭转置
共轭(Conjugate)是复数的一个基本操作,共轭操作就是将复数的虚部取反。共轭转置(Conjugate Transpose 或 Hermitian Transpose)是对矩阵的一个复数操作,包括共轭和转置两步。原创 2024-11-18 18:46:55 · 8966 阅读 · 0 评论 -
什么是酉矩阵
酉矩阵(Unitary Matrix)是线性代数中复数域上的一个重要概念,是正交矩阵在复数域的扩展。酉矩阵是复数域上的正交矩阵,它在复向量空间中描述了保持内积(长度和角度)的线性变换。原创 2024-11-18 18:41:23 · 5935 阅读 · 1 评论 -
基底是什么
基底(Basis)是线性代数中的一个重要概念,用来描述向量空间的结构。简单来说,基底是一个向量空间中用于“表示其他向量”的一组特殊向量。原创 2024-11-18 17:16:47 · 5032 阅读 · 0 评论 -
二次型函数的矩阵求导规则
本文讲了二次型函数的矩阵求导规则及推导过程,还讲了标量函数对向量的求导规则原创 2024-11-17 11:43:41 · 1777 阅读 · 0 评论 -
什么是二次型
二次型(Quadratic Form)是线性代数中的一个重要概念,它描述了一个向量通过矩阵变换后与自身的内积关系,形式上类似于二次方程。二次型是一个非常重要的数学工具,用来描述向量在特定矩阵作用下的扩展程度。在PCA中,二次型aTΣa用于衡量数据在某个方向a上的方差,其最大值对应于协方差矩阵的最大特征值,而最大值对应的方向是主成分方向(特征向量)。原创 2024-11-16 18:28:27 · 2404 阅读 · 1 评论 -
什么是夹角余弦
夹角余弦(Cosine of the Angle),通常是指两个向量之间的余弦值。在向量空间中,夹角余弦用来度量两个向量之间的相似度,余弦相似度是通过计算向量之间的夹角的余弦值来实现的。夹角余弦的值范围在 -1 到 1 之间。原创 2024-11-14 18:23:06 · 5111 阅读 · 0 评论 -
什么是向量的模长
向量的模长(或称为范数)是一个量度,用来表示向量的大小或长度。在几何学中,向量的模长相当于从原点到该向量终点的距离。对于一个向量v,其模长表示该向量在空间中延伸的程度。原创 2024-11-14 18:17:06 · 3872 阅读 · 0 评论 -
相关系数与协方差的关系
协方差反映了两个变量之间共同变化的程度,但它的数值与变量的单位和尺度密切相关,因此没有直接的标准化意义。相关系数则是对协方差进行了标准化,使得它不依赖于变量的单位或尺度,提供了一个更具普遍意义的度量,值范围从-1到1,便于解释变量之间的关系强度和方向。原创 2024-11-14 16:07:06 · 1573 阅读 · 0 评论 -
什么是相关系数
相关系数(Correlation Coefficient)是衡量两个变量之间线性关系强度和方向的统计量。它的值范围在-1到1之间,表示两个变量之间的相关性程度。通过计算相关系数,我们可以了解两个变量之间是否有关系,并且关系是正向的、负向的,还是没有明显的关系。皮尔逊相关系数(Pearson Correlation Coefficient),用于度量线性关系。斯皮尔曼等级相关系数(Spearman’s Rank Correlation Coefficient),用于度量变量之间的单调关系(不仅限于线性关系)。原创 2024-11-14 16:03:06 · 2606 阅读 · 0 评论 -
协方差矩阵及其计算方法
协方差矩阵(Covariance Matrix)是一个描述多维数据特征之间相互关系的矩阵,广泛应用于统计学和机器学习中。它用于表示各个特征之间的协方差,是分析多维数据分布和特征依赖性的重要工具。原创 2024-11-14 12:59:51 · 10305 阅读 · 5 评论 -
一元二次函数的最值公式
一元二次函数的最值公式, x=−b/2a, 当a>0时,抛物线开口向上,函数有最小值;当a原创 2024-11-07 18:15:35 · 3127 阅读 · 0 评论 -
什么是二阶泰勒展开式
二阶泰勒展开式是用函数在某点的值、一阶导数和二阶导数来近似该函数的一种方法。它能够反映函数在这一点的局部特性,并且常用于优化和机器学习中的函数近似。原创 2024-11-06 18:25:58 · 4334 阅读 · 0 评论 -
弧度和角度
角度和弧度是两种不同的测量角度的方式,彼此可以进行转换。本文给出了弧度和角度的定义、弧度与角度的关系、弧度与角度的转换公式、常见角度与弧度的转换、弧度的优势原创 2024-10-16 11:47:17 · 2516 阅读 · 0 评论 -
什么是方差
本文介绍了方差和标准差的关系,方差的概念,方差的定义:1.总体方差;2.样本方差,方差的直观解释,方差的意义:1.度量数据的离散程度;2.模型评估中的应用;3.特征选择中的应用;4.偏差-方差权衡(Bias-Variance Tradeoff),并举例说明了计算的步骤。原创 2024-10-07 23:15:53 · 4561 阅读 · 0 评论 -
正态分布的极大似然估计一个示例,详细展开的方程求解步骤
本文是正态分布的极大似然估计一个示例,将导数的求解过程和解方程的具体步骤详细展开叙述,便于理解原创 2024-10-01 18:25:47 · 2644 阅读 · 0 评论