POJ 2002 Squares (已知正方形对角线两点推另外两点,STL set)

本文介绍了一种通过枚举正方形对角线上的两个点来检测一组点中是否存在正方形的算法。利用C++实现,该算法通过查找剩余两个顶点是否存在于预定义的点集合中来判断正方形的存在性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

枚举正方形对角线两点,推出另外两点,看在不在 set 里。(set 里 count() 返回整数,且只为 0 或 1 find() 返回迭代器)

#include <iostream>
#include <algorithm>
#include <utility>
#include <set>
using namespace std;

typedef pair<int, int> Point;
const int maxn = 1010;
int x[maxn], y[maxn];
set<Point> pset;

int main()
{
    int n;

    while (cin >> n && n) {
        pset.clear();
        for (int i = 0; i < n; i++) {
            cin >> x[i] >> y[i];
            pset.insert(make_pair(x[i], y[i]));
        }
        int cnt = 0;
        for (int i = 0; i < n; i++) {
            for (int j = i+1; j < n; j++) {
                int mx = x[i] + x[j], dx = max(x[i], x[j]) - min(x[i], x[j]);
                int my = y[i] + y[j], dy = max(y[i], y[j]) - min(y[i], y[j]);
                if ((mx+dy) & 1 || (my+dx) & 1) continue;
                int sg = ((x[i]-x[j]) * (y[i]-y[j]) < 0) ? 1 : -1;
                if (pset.count(make_pair((mx+dy)/2, (my+sg*dx)/2)) &&
                    pset.count(make_pair((mx-dy)/2, (my-sg*dx)/2)))
                    cnt++;
            }
        }
        cout << cnt / 2 << endl;
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值