POJ 1410 Intersection(线段相交)

本文介绍了一种判断线段与矩形是否有交集的算法实现,通过使用向量运算来确定线段端点是否位于矩形内部或边界上,并通过交叉乘积等方法检查线段与矩形边界的相交情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

判断线段是否与矩形有交集。。

刚开始看成直线错了好几发。。

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;

typedef struct point {
    double x;
    double y;
}point;

typedef struct v {
    point start;
    point end;
}v;

const double eps = 1e-8;

point rec[4], seg[2];

double crossProduct(v* v1, v* v2)
{
    v vt1, vt2;
    double result = 0;

    vt1.start.x = 0;
    vt1.start.y = 0;
    vt1.end.x = v1->end.x - v1->start.x;
    vt1.end.y = v1->end.y - v1->start.y;

    vt2.start.x = 0;
    vt2.start.y = 0;
    vt2.end.x = v2->end.x - v2->start.x;
    vt2.end.y = v2->end.y - v2->start.y;

    result = vt1.end.x * vt2.end.y - vt1.end.y * vt2.end.x;
    return result;
}

bool onLine(point pi, point pj, point Q)
{
    v v1, v2;
    v1.start = v2.start = Q;
    v1.end = pi;
    v2.end = pj;
    if(crossProduct(&v1, &v2) == 0)
        return true;
    return false;
}

double multi(point p1, point p2, point p0)  //used for Across
{
    return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}

int Across(v v1, v v2)  //segmentCross,use functions: multi()
{
    if(max(v1.start.x,v1.end.x) >= min(v2.start.x, v2.end.x) &&
       max(v2.start.x,v2.end.x) >= min(v1.start.x, v1.end.x) &&
       max(v1.start.y,v1.end.y) >= min(v2.start.y, v2.end.y) &&
       multi(v2.start, v1.end, v1.start) * multi(v1.end, v2.end, v1.start) > 0 &&
       multi(v1.start, v2.end, v2.start) * multi(v2.end, v1.end, v2.start) > 0)
        return 1;
    else
        return 0;
}

bool onSegment(point Pi, point Pj, point Q) //Pi, Pj, Q are all different points
{//same slopes or same x-coordinates or same y-coordinates
    if((Q.x - Pi.x) * (Pj.y - Pi.y) == (Pj.x - Pi.x) * (Q.y - Pi.y) &&
         min(Pi.x, Pj.x) <= Q.x && Q.x <= max(Pi.x, Pj.x)&&
         min(Pi.y, Pj.y) <= Q.y && Q.y <= max(Pi.y, Pj.y))  //determine that Q is "between" Pi and Pj
         return true;
    else
        return false;
}

bool inRectangle(point p, point a, point b)
{
    if(p.x >= a.x && p.x <= b.x && p.y >= b.y && p.y <= a.y)
        return true;
    return false;
}

int main()
{
    //freopen("1", "r", stdin);
    int t;

    for(scanf("%d", &t); t--;) {
        bool ok = false;
        double x1, y1, x2, y2;
        v v1, v2;
        scanf("%lf%lf%lf%lf", &seg[0].x, &seg[0].y, &seg[1].x, &seg[1].y);
        scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
        rec[1].x = min(x1, x2);
        rec[1].y = max(y1, y2);
        rec[3].x = max(x1, x2);
        rec[3].y = min(y1, y2);
        rec[2].y = rec[1].y;
        rec[2].x = rec[3].x;
        rec[0].x = rec[1].x;
        rec[0].y = rec[3].y;
        v1.start = seg[0];
        v1.end = seg[1];
        for(int i = 0; i < 2; i++) {
            if(inRectangle(seg[i], rec[1], rec[3])) {
                ok = true;
                break;
            }
        }
        for(int i = 0;!ok && i < 4; i++) {
            v2.start = rec[i];
            v2.end = rec[(i+1)%4];
            if(onSegment(seg[0], seg[1], rec[i]) || onSegment(rec[i], rec[(i+1)%4], seg[0]) ||
               onSegment(rec[i], rec[(i+1)%4], seg[1]) || Across(v1, v2)) {
                ok = true;
                break;
            }
        }
        puts(ok ? "T" : "F");
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值