文章目录
大模型微调技术有很多,如P-Tuning
、LoRA
等,我们在之前的博客中也介绍过,可以参考:大模型高效参数微调技术(Prompt-Tuning、Prefix Tuning、P-Tuning、LoRA…)
在本篇文章中,我们就 LoRA (Low-Rank Adaptation)
即低秩适应的微调方法工作原理及代码实践进行介绍。
完整的微调步骤可以参考我们的博客:【大模型】基于LoRA微调Gemma大模型(2)
一、LoRA工作原理
1.1 基本原理
LoRA 是 Low-Rank Adaptation 或 Low-Rank Adaptors的首字母缩写词,它提供了一种高效且轻量级的方法,用于微调预先训练好的的大语言模型。
LoRA的核心思想是用一种低秩的方式来调整这些参数矩阵。LoRA通过保持预训练矩阵(即原始模型的参数)冻结(即处于固定状态),并且只在原始矩阵中添加一个小的增量,其参数量比原始矩阵少很多。
例如,考虑矩阵 W,它可以是全连接层的参数,也可以是来Transformer中计算自注意力机制的矩阵之一:

显然,如果 W o r i g W_{orig} Worig 的维数为 n×m,而假如我们只是初始化一个具有相同维数的新的增量矩阵进行微调,虽然我们也实现类似的功能,但是我们的参数量将会加倍。 LoRA使用的Trick就是通过训练低维矩阵 B 和 A ,通过矩阵乘法来构造 ΔW ,来使 ΔW 的参数量低于原始矩阵。

这里我们不妨定义秩 r,它明显小于基本矩阵维度 r≪n 和 r≪m。则矩阵 B 为 n×r,矩阵 A 为 r×m。将它们相乘会得到一个维度为 nxm的W 矩阵,但构建的参数量减小了很多。
LoRA原理见下图:具体来说就是固定原始模型权重,然后定义两个低秩矩阵作为新增weight参与运算,并将两条链路的结果求和后作为本层的输出,而在微调时,只梯度下降新增的两个低秩矩阵。

此外,我们希望我们的增量ΔW在训练开始时为零,这样微调就会从原始模型一样开始。因此,B通常初始化为全零,而 A初始化为随机值(通常呈正态分布)。
1.2 实现步骤
(1)选择目标层
首先,在预训练神经网络模型中选择要应用LoRA的目标层。这些层通常是与特定任务相关的,如自注意力机制中的查询Q和键K矩阵。
值得注意的是,原则上,我们可以将LoRA应用于神经网络中权矩阵的任何子集,以减少可训练参数的数量。在Transformer体系结构中,自关注模块(Wq、Wk、Wv、Wo)中有四个权重矩阵,MLP模块中有两个权重矩阵。我们将Wq(或Wk,Wv)作为维度的单个矩阵,尽管输出维度通常被切分为注意力头。
(2)初始化映射矩阵和逆映射矩阵
为目标层创建两个较小的矩阵A和B,然后进行变换。
参数变换过程:将目标层的原始参数矩阵W通过映射矩阵A和逆映射矩阵B进行变换,计算公式为: W ′ = W + A ∗ B W' = W + A * B W′=W+A∗B,这里W’是变换后的参数矩阵。
其中,矩阵的大小由LoRA的秩(rank)和alpha值确定。
(3)微调模型
使用新的参数矩阵替换目标层的原始参数矩阵,然后在特定任务的训练数据上对模型进行微调。
(4)梯度更新
在微调过程中,计算损失函数关于映射矩阵A和逆映射矩阵B的梯度,并使用优化算法(如Adam、SGD等)对A和B进行更新。
注意:在更新过程中,原始参数矩阵W保持不变。其实也就是训练的时候固定原始PLM的参数,只训练降维矩阵A与升维矩阵B (W is frozen and does not receive gradient updates, while A and B contain trainableparameters )
(5)重复更新
在训练的每个批次中,重复步骤3-5,直到达到预定的训练轮次(epoch)或满足收敛条件。
且当需要切换到另一个下游任务时,可以通过减去B A然后添加不同的B’ A’来恢复W,这是一个内存开销很小的快速操作。
When we need to switch to another downstream task, we can recover W0 by subtracting BA andthen adding a different B0A0, a quick operation with very little memory overhead.
总之,LoRA的详细步骤包括:选择目标层、初始化映射矩阵和逆映射矩阵、进行参数变换和模型微调。在微调过程中,模型会通过更新映射矩阵U和逆映射矩阵V来学习特定任务的知识,从而提高模型在该任务上的性能。
二、LoRA 实现
这里主要介绍几个与 LoRA 实现相关的类库。
2.1 PEFT库:高效参数微调
Huggingface公司推出的 PEFT (Parameter-Efficient Fine-Tuning,即高效参数微调之意) 库封装了LoRA这个方法,PEFT库可以使预训练语言模